Effects of temperature and humidity on BMSB

Joanna Fisher, Jhalendra Rijal, Frank Zalom
Department of Entomology and Nematology, UC Davis

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Specialty Crop Research Initiative under award number 2016-51181-25409.
Unusual number of hot temp days in Jul + Aug 2016 (above 35°C and below 16% RH)
Unusual number of hot temp days in Jul + Aug 2016 (above 35°C and below 16% RH) followed by near zero trap counts

Ingles and Daane, 2018 J. Econ. Entomol.
Goal: Determine effect of field temperature and humidity on BMSB survival
Goal: Determine effect of field temperature and humidity on BMSB survival
Placed egg masses in 3 sites in different counties in California

Community Garden
Sacramento County

Almond Trees
Stanislaus County

Tree of Heaven
Yolo County

Cherry Orchard
Solano County
• Eggs left in the field for approximately 48 hr., recorded field temp and rh
• Reared out in the lab until the 2nd instar
• Repeated 13 times from 7/26-9/4 2017
Strong linear relationship between temp and humidity in the field so can’t determine individual effect of temperature vs. humidity.
Temperature and humidity (are highly correlated) influenced egg hatch.

High temp (low RH) and low temp (high RH) decrease hatch rate.
Temperature and humidity (are highly correlated) influenced survival to the 2nd instar

High temp (low RH) and low temp (high RH) decrease survival to 2nd instar

Overall finding: High temperatures in the central valley decreased BMSB hatch and nymph survival
• Adults placed weekly in bags on almond trees in Modesto CA
• Mortality recorded after 1 week
• Repeated weekly from 3/27-8/22, 2018
• Significant effect of temperature p=.0010

• Adults have reduced survival at high temperatures and low RH
What we learned from the field study

Temperature and humidity are highly correlated

Observed BMSB population declines in the field are at least partly the result of high temperature and low humidity events
Is Temperature or Humidity more Important for Predicting BMSB Mortality?
Back to the Lab!
<table>
<thead>
<tr>
<th>Insect life stages</th>
<th>Avg. Humidity</th>
<th>2 day high temp exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st instars</td>
<td>19%</td>
<td>Ambient: 27°C const</td>
</tr>
<tr>
<td>3rd-4th instars</td>
<td>38%</td>
<td>High temp: 39°C 3.75hr.</td>
</tr>
<tr>
<td>Adults</td>
<td>54%</td>
<td>Very high temp: 42°C 3.75hr.</td>
</tr>
<tr>
<td></td>
<td>73%</td>
<td></td>
</tr>
</tbody>
</table>
High temperature exposure significantly decreases 1st instar survival.
- High temperature exposure significantly decreases 1st instar survival
- At 27°C and 40°C low humidity significantly decreased survival
• Older nymph survival decreased after exposure to 42°C vs. lower temperatures

Proportion 3rd-4th instar nymphs alive after 11 days

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>19% rh</th>
<th>38% rh</th>
<th>54% rh</th>
<th>73% rh</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Older nymph survival decreased after exposure to 42°C vs. lower temperatures.
• Older nymph survival decreased after exposure to 42°C vs. lower temperatures
• Exposure to low RH decreased survival only for nymphs exposed to 42°C
• Exposure to 42°C significantly decreased adult survival

Proportion adults alive after 11 days

- 27 °C
- 39 °C
- 42 °C

Temperature °C

Percent Survival %

Exposure to 42°C significantly decreased adult survival.
• Exposure to 42°C significantly decreased adult survival
• No significant effect of humidity within temperature treatments

Proportion adults alive after 11 days

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>19% rh</th>
<th>38% rh</th>
<th>54% rh</th>
<th>73% rh</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 °C</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>39 °C</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>42°C</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Bugguide.net
Conclusions: Lab Study

• Exposure to 42°C significantly decreased BMSB survival for all life stages

• Whether or not humidity influenced BMSB survival depended on the temperature and BMSB life stage
 – 1st instars were very susceptible to low humidity at all temperatures
 – High humidity (73%) decreased survival of 3rd-4th instars but only at 42°C
 – There was no effect of humidity for adults
Conclusions

• Our results suggest that high temperature events can lead to decreases in BMSB populations.

• The impact of high temperature events on BMSB populations will depend on the relative humidity and what insect life stages are exposed.
Acknowledgments

Zalom lab members:
Chloe Lin
Milton Huynh

Collaborators:
• Jhalendra Rijal
• Chuck Ingels
• Charles Pickett

Funding:
Brown Marmorated Stink Bug SCRI grant
USDA-NIFA SCRI 2016-51181-25409
Questions?