BMSB in Ornamental Systems

Ornamentals Commodity Team Participants and Participating Institutions:

University of Maryland – Paula Shrewsbury (*coordinator*), Pedro Barbosa, Bryon Butler, Stanton Gill, Holly Martinson, Karen Rane, Mike Raupp, Dilip Venugopal *University of Delaware* – Brian Kunkel

Rutgers University - George Hamilton

USDA ARS Horticultural Crops Research Lab, Corvalis, Oregon – Jana Lee Oregon State University – Peter Shearer, Nik Wiman

Many graduate students, post docs, technicians, and stakeholders

arch Initiative

BMSB SCRI Stakeholder Advisory Meeting 2014

Collaborating Institutions

Ornamental Systems

(woody and herbaceous plants: nurseries, landscapes, greenhouses, high tunnels)

Current grant (2014)

Objs. 1.2, 1.3: Damage, phenology and impact of BMSB in ornamental systems

Objs. 3.1, 3.2: Crop specific IPM programs in ornamental systems

Renewal grant

Obj. 1.2: Damage (direct, indirect)

Obj. 1.3.1: Determine BMSB phenology and impact on specific specialty crops

Ornamental Nurseries

Why nurseries?

- Economically important:
 - #2 Ag Sector in MD 2008: ~ \$2 billion green industry gross receipts
- High plant diversity
- Large blocks of trees

BMSB

- Potentially damaging pest
- Must immigrate, emigrate
- Feed throughout season
- Broad use of ornamentals

Examine abundance, host use and selection, movement patterns, and damage

Goals:

- Develop IPM programs
 - Biology and ecology
 - Monitoring (plant species, spatially, temporally)
 - Host plant resistance, susceptibility
- Design BMSB out of landscapes
 - Reduce plant damage
 - Minimize nuisance pest issue

Monitoring in Oregon Nurseries

	Target	Plants	BMSB
2011	14 sites in Canby and Dayton	Cherry, Crabapple, Elm, Euonymus, Hawthorne, Mixed hedge, Pear, Plum (unsprayed), Poplar, Syringa	Sep 8 (beat), Oct 7 (trap) in plum
2012	16 sites spread over 100 miles	Apple, Cherry, Conifer, Cornus, Crabapple, Euonymus, Hawthorne, Laurel, Mixed hedge, Oak, Plum (unsprayed), Rose	Despite high effortsO BMSB
2013	3 sites in Canby, Dayton, Portland	Mixed hedge near abandoned orchard, Plum (unsprayed), Retail mix	Aug 14 – Oct (trap) 25 BMSB
2014	4 sites in Canby and Corvallis	Ornamental plum (unsprayed), ornamental cherry next to hazelnuts, cherry laurel, and conifer mix	July 15 – Oct 22 (trap & beat), 300+ BMSB

- Each site has a Pyramid trap and Beat 100 plants
- One site has been repeatedly sampled since 2011, BMSB were caught one month earlier with much higher numbers than last year (300+ vs. 25)

Woody Ornamentals (MD)

- Abundance over time
- Host utilization
- Movement patterns
- Plant phenology x resource use
- Damage by BMSB

BMSB Egg Abundance Over Time

- Sampled three nurseries at regular intervals from late
 May through September 2012 and 2013
- Visual searches of foliage on Acer, Prunus, and Ulmus

2013

Total Number of BMSB Eggs

Goal: Design BMSB out of landscapes

Objectives:

1. Identify trees and shrubs used by different life stages

- 2. Elucidate taxonomic affinity of different life stages (gymnosperms vs angiosperms by stadia)
- 3. Determine relationship between host origin and BMSB abundance (Asian vs non-Asian)
- 4. Examine effects of reproductive structures on host use

Study Sites

Raemelton Farm:

Adamstown, MD Frederick Co.

~300 Acres

BMSB pressure ~4 Years

Sampled 2011-2013

10

Study Sites

Ruppert Nurseries:

Laytonsville, MD Mongomery Co.

~800 Acres

BMSB pressure ~5 Years

2 Sites

Sampled 2012-2013

Sampling Methods

2011-2013

1 min visual count per tree:

Leaves - Fruit - Bark

BMSB stages:
Egg Masses
Early Nymphs (1st -3rd)
Late Nymphs (4th -5th)
Adults

Sampling Methods

2011-2013

Identified Tree

Genus - Species - Cultivar

Amelanchier canadensis 'Glenform'

Geographic Origin

Asian • Non-Asian

Taxonomic Classification

Angiosperm • Gymnosperm

Survey Methods

2013 - 2014

Fruit Stage
Absent
Immature fruit
Mature fruit

Scope of Study

5,474 individual plants
53,995 tree visits
36,900 stink bugs
and egg masses

Ornamental Host Use Patterns

Confirmed:
19 host species
7 genera

Identified:
89 new host species
(175 cultivars)
13 non-host species
(43 cultivars)

2011-2013

82 % of cultivars used

E. Bergmann et al., UMD

UMD

Does host breadth vary among life stages?

Top 15 Hosts: Active Stages

Rank	Cultivar	Taxonomic Classification	Geographic Origin	Ave. BMSB
1	Syringa pekinensis 'Zhang Zhiming'	Angiosperm	Asia	5.573
2	Sophora japonica 'Millstone'	Angiosperm	Asia	4.444
3	Evodia daniellii	Angiosperm	Asia	4.333
4	Syringa pekinensis 'Morton'	Angiosperm	Asia	3.636
5	Acer x freemanii 'Jeffersred'	Angiosperm	N. America	3.333
6	Cercis canadensis 'Alba'	Angiosperm	N. America	2.844
7	Acer pensylvanicum	Angiosperm	N. America	2.563
8	Hibiscus syriacus 'Satin Blue'	Angiosperm	Asia	2.25
9	Malus 'Mary Potter'	Angiosperm	Asia	2.212
10	Cornus florida x kousa 'Celestial'	Angiosperm	Hybrid	2.143
11	Cercis canadensis spp.	Angiosperm	N. America	2.116
12	Ulmus americana 'Valley Forge'	Angiosperm	N. America	2.062
13	Ficus carica 'Chicago Hardy'	Angiosperm	Europe	1.978
14	Acer rubrum 'Brandywine'	Angiosperm	N. America	1.968
15	Acer rubrum 'Franksred'	Angiosperm	N. America	1.955

Top 15 Hosts: Egg Masses

Rank	Cultivar	Taxonomic Classification	Geographic Origin	Ave. # of Egg Masses
1	Evodia daniellii	Angiosperm	Asia	0.75
2	Quercus robur 'Fastigiata'	Angiosperm	Europe	0.056
3	Ulmus americana 'Valley Forge'	Angiosperm	N. America	0.052
4	Liquidambar styraciflua	Angiosperm	N. America	0.052
5	Cercis canadensis	Angiosperm	N. America	0.045
6	Ficus carica 'Chicago Hardy'	Angiosperm	Europe	0.044
7	Acer rubrum 'Franksred'	Angiosperm	N. America	0.038
8	Cladrastis kentukea	Angiosperm	N. America	0.038
9	Tilia tomentosa 'Sterling'	Angiosperm	Europe	0.038
10	Cladrastis kentukea 'Perkins Pink'	Angiosperm	N. America	0.037
11	Acer saccharum 'Legacy'	Angiosperm	N. America	0.037
12	Acer rubrum 'Brandywine'	Angiosperm	N. America	0.036
13	Acer x freemanii 'Jeffersred'	Angiosperm	N. America	0.034
14	Malus 'Prairifire'	Angiosperm	Asia	0.034
15	Acer pensylvanicum	Angiosperm	N. America	0.031

<u>Species not used by eggs, nymphs, adults (46 cultivars)</u>

- Abies nordmanniana (1)
- Acer davidii (1)
- Acer palmatum (6)
- Aesculus hippocastanum (1)
- Cedrus atlantica (1)
- Cedrus deodara (1)
- Cercidiphyllum japonicum (1)
- Chamaecyparis obtuse (5)
- Cornus kousa (1)
- Ginkgo biloba (1)
- Hamamelis x intermedia (2)
- Juniperus chinensis (1)
- Physocarpus opulifolius (1)
- Picea breweriana (1)
- Picea koraiensis (1)

- Picea meyeri (1)
- Picea omorika (1)
- Picea pungens (6)
- Pinus cembra (1)
- Pinus densiflora (1)
- Pinus koraiensis (1)
- Pinus nigra (1)
- Pinus parviflora (1)
- Pinus strobus (1)
- Pinus thunbergii (1)
- Prunus mume (1)
- Prunus serrulata (1)
- Sequoiadendron giganteum (1)
- Thuja plicata (1)
- Tsuga canadensis (1)

Patterns of Host Use

Plant Classification

Do Angiosperms and Gymnosperms differ in their use by BMSB?

Host Origin

Does host use differ between plants of Asian and non-Asian origin?

Host Classification

* =significant at $P \le 0.001$

Host Origin

Does host use differ between plants of Asian and non-Asian origin?

- Herbivores utilize plants they "know" evolutionarily - host specialization Prediction: Abundance Asian > Non-Asian
- 2. Herbivores exploit evolutionarily naïve hosts
 defense free space
 Prediction: Abundance Non-Asian > Asian

Host Origin

* =significant at $P \le 0.05$

Do BMSB track resources in diverse woody plant nurseries?

- 1. Do BMSB utilize trees with fruits? Does that depend on fruit maturity?
- 2. How does the timing of fruiting influence BMSB abundances?
- 3. Does fruit removal depress BMSB abundances?

Adults feed through bark, wounds attract Hymenoptera

BMSB feeding damage to woody trees

Possible damage

Direct feeding
Indirect as disease vector

BMSB Bark Feeding Damage Study

Objective

 to determine the impact of BMSB bark feeding on ornamental tree stock (plant growth and disease transmission)

Methods:

Plants – Elms, Maples BMSB densities – 0, 15, 30 / trunk Measure

- tree growth
- injury to bark
- disease

Summary of Findings

- BMSB highly polyphagous: used 82% of 259 cultivars
- Discovered 46 non-host cultivars
- Adults use the widest range of hosts, oviposit on a smaller range of hosts
- Angiosperms strongly favored over gymnosperms
- Non-Asian hosts preferred for oviposition overall
 - Variation exists
- Active stages did not prefer Asian to Non-Asian hosts overall
 - Pattern varied among congeners of different genera
- Plants with ripe fruit favored by late nymphs and adults

Progress Toward IPM Programs in Ornamental Systems

Designing BMSB-free Landscapes

- Avoid use of:
 - Plants highly utilized by BMSB
 - Angiosperms (deciduous)
 - Plants that are native to the U.S. (non-Asian) (?)
 - Plants that produce fruit
- Incorporate use of less utilized plants
- Incorporate plants that favor native natural enemies

Designing BMSB-free Landscapes

- Reduce BMSB abundance in landscapes that surround homes, structures, etc.
- Should reduce abundance of BMSB entering structures to overwinter (nuisance pest)

Research Based Information Sustaining IPM Programs

- BMSB biology / phenology
 - Determined significant life cycle activities (eggs, nymphs, adults)
 - 2 generations/yr; active May Sept.
- BMSB patterns in ornamental host use
 - Host utilization patterns on woody ornamental, herbaceous perennial (identified host and non-host plants)
 - Appear to track resources (ex. fruit, seed)
- Spatial dynamics and movement
 - Immigration / emigration; edge effects; patch dynamics; resource tracking
 - Landscape plants / overwintering populations in structures
- Chemical efficacy
 - No consistent significant damage to date; low demand
- Biological control
 - Native egg parasitoids / predators are suppressing BMSB (~58% egg mortality)
 - Plant species, hosts that favor native natural enemies

Acknowledgements

Field Crew

Chris Riley

Ryan Wallace

Sean Harris

Dylan Reisinger

Kevin Beiter

Kris Keochinda

Colleen McMullen

Ben Corwell

Caroline Brodo

Ashley Jones

Nancy Harding

Chris Sargent

Nursery Cooperators

Steve Black,

Raemelton Farm

Kelly Lewis, Nick Groves,

Ruppert Nursery

Funding

USDA-NIFA-SCRI

#2011-51181-30937

UMD MAES

MD Agricultural

Experiment Station,

Project# MD-ENTO-8732

Mar. 2014