Brown Marmorated Stink Bug Host-Use in Organic Vegetables with Trap Crop

C.R. Mathews^{1,2} and M.H. Hallack¹

¹Redbud Farm, Inwood, WV ²Institute of Environmental and Physical Sciences, Shepherd University, Shepherdstown, WV

> BMSB Working Group Meeting, Winchester, VA November 27, 2012

Small-scale, **highly diverse organic** farm, Berkeley County, WV

Preliminary Observations: 2011

- Green amaranth (Amaranthus spp.) and sunflower highly attractive ... trap crop?
- Organic pyrethrin (Pyganic) ineffective
- Baited trap effective late season

2012 Field Study Objectives

- Identify directional source of BMSB before crop colonization
- Evaluate effectiveness of trap crop buffer
- Determine host-use patterns throughout growing season
- Determine overall host-plant preferences

Methods

- Cash crops: okra ('Clemson Spineless'), sweet pepper ('Red Ace'), tomato ('Big Boy'), summer squash ('Zephyr')
- **Trap crops:** green amaranth (*Amaranthus spp.*) and sunflower (open pollinated mixture)
- Pheromone traps:

'Rescue' dual lure (Sterling International, Inc.)

Methods

- RCBD with two blocks ('old' and 'new')
- Two replicates per block

1 Replicate (900 sq ft)

- 3 x 36 ft crop rows, black plastic
- 3 ft aisles, straw mulch
 - Treatment: 3 ft wide perimeter, sunflower and amaranth (broadcast 23 May), 4
 Rescue traps, 3 ft height (6 June)

Methods: Arthropod Sampling

Weekly (4 Jun –19 Sep)

 Cash Crop: Whole plant visual sample (3/row), BMSB, native stinkbug and predator densities

• **Trap Crop:** Trap contents recorded, removed

Directionality of BMSB in Trap Crop

No effect of trap placement within sample dates

Block*Trap Placement: 10 July

Old

BMSB Colonization & Use of Trap Crop (nymph and adult)

• Earlier colonization and 2-fold increase by 12 Sept, in block with production history

Seasonal BMSB Densities (nymph and adult) in Trap Crop

Seasonal BMSB Densities (all stages) in Cash Crops: Block*Crop Effect

 Same host-plant preference profile, but higher magnitude in plot with history of production

Trap Crop Effectiveness: Okra

Trap Crop Effectiveness: Pepper

Trap Crop Effectiveness: Tomato

BMSB Colonization & Use of Cash Crops: Old Block

- Colonization of cash crops delayed 14 d in Trap Crop vs.
 Control; okra used before other cash crops
- Early colonization and consistent use of trap through season

17 July

BMSB Colonization & Use of Cash Crops: New Block

- Colonization of cash crops delayed 7 d in Trap Crop vs.
 Control; okra used before other cash crops
- Early colonization and consistent use of trap through season

17 Aug

25 August

19 September

Conclusions

- BMSB colonize earlier, use hosts more effectively in habitats with prior production (14 d earlier colonization and 2-fold higher density in old vs. new block)
- Sunflower trap more attractive than cash crops
 (> 2-fold increase, as compared to cash crops)
- Trap crop system removed average 112, 213
 BMSB (new, old blocks respectively) across the season, delayed colonization and lowered densities for tomato, pepper (late season only)

Conclusions

- BMSB colonize sunflower first and consistantly use the trap even after senescence, then move to okra before other cash crops; no preference for squash
- First BMSB detection on Northern side (both blocks)

Acknowledgements

- This research was funded in-part through generous support from the U.S.D.A.
 Sustainable Agriculture Research and Education Farmer Grant program (Project Number FNE12-759)
- Thanks to Redbud Farm field crew: Daniel, Paige, Wahid Zainab (and Rosy)

