Distribution and impact of *Trissolcus japonicus* and status of petition to release quarantined populations

Kim Hoelmer
USDA-ARS
Beneficial Insects Introduction Unit
Newark, DE

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Specialty Crop Research Initiative under award number 2016-51181-25409.
Fate of naturally laid BMSB eggs

<table>
<thead>
<tr>
<th>Year</th>
<th>756</th>
<th>849</th>
<th>2462</th>
<th>16928</th>
<th>5118</th>
<th>2014</th>
<th>1168</th>
<th>1395</th>
<th>567</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
</tbody>
</table>

- Parasitized
- Predation - Chew
- Predation - Suck
- Nymph - unhatched
- Nymph - hatched
Trissolcus japonicus
“samurai wasp”
Trissolcus japonicus
(Hym.: Scelionidae)

- solitary egg parasitoid
- high % of eggs in mass attacked
- 2 - 3 weeks / generation
- multiple generations/season
- female-biased sex ratio
- 65 to 90% BMSB parasitism in Asia

Egg load over lifespan

% Survival

Time (d)

Female longevity

Time (d)

C. Dieckhoff/ARS
Summary – *T. japonicus* in Asia:

- *T. japonicus* is the dominant parasitoid species on BMSB throughout the season on different host plants.

- Other species (e.g., *Anastatus*, *Ooencyrtus*, tachinid flies) are of minor importance in limiting BMSB.

- Ecological host range of *T. japonicus* contains other species in these habitats, *e.g.* *Plautia* and *Dolycoris*.

- *T. japonicus* is an oligophagous species, thus non-target attacks is likely of other stink bugs, risk-benefit analysis needed for classical biocontrol.
Why is a Risk Assessment Needed?

NAPPO (and APHIS) Guidelines for Petitions for First Release of Arthropod Pest Biological Control Agents:

General Requirements
1. Proposed Action
2. Target Pest Information
3. Biological Control Agent Information
4. Host-Specificity Testing
5. Environmental and Economic Impacts of Proposed Release
6. Post-Release Monitoring
Distribution of adventive *Trissolcus japonicus* (as of December, 2017)
Parasitized egg masses recovered from sentinel egg canopy transects

2016:
- 135 egg masses deployed
- 4.4% (n = 6) of egg masses parasitized
- 2.2% (n = 3) of egg masses parasitized by *T. japonicus* (mid and upper canopy)

2017:
- 105 egg masses deployed
- 2.86% (n = 3) of egg masses parasitized
- 0.95% (n = 1) of egg masses parasitized by *T. japonicus* (upper-canopy)

<table>
<thead>
<tr>
<th>Canopy Location</th>
<th>Total # egg masses</th>
<th># Egg masses yielding T. japonicus</th>
<th># Egg masses yielding other parasitoids</th>
<th># Egg masses previously parasitized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Middle</td>
<td>28</td>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Lower</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Numerically, but not significantly, greater levels of parasitism at mid-canopy (Fisher’s exact test, df = 6; p=0.27)
1. **Assembly:**
 Sticky traps attached to 4.8m poles

2. **Deployment:**
 At mid-canopy for 7 days

3. **Processing:**
 Parasitoids removed and identified
Egg mass fate

Unparasitized masses
86%

BIIRU Newark 2017
Sentinel Egg masses (placed on foliage)

Emerged Parasitoid Species Composition

- Trissolcus japonicus: 18%
- Anastatus sp. (males only): 20%
- Ooencyrtus sp.: 6%
- Trissolcus brochymenae: 5%
- Trissolcus euschisti: 6%
- Anastatus mirabalis: 4%
- Anastatus pearsalli: 7%
- Anastatus reduvii: 34%

N placed = 572
N parasitized = 80
(14.0% of total)
N with 2 or more parasitoid spp. emerged = 8
COI (barcode gene) insights:

- Genetic diversity of *T. japonicus* in Asia is structured in six major lineages
- Lineage 6 is the most widely distributed in Asia
- All U.S. adventive populations belong to lineage 6
- No significant variability among U.S. adventive populations

PCoA of 115 specimens recovered in U.S. & haplotyped
Principal coordinate analysis (PCoA) of haplotype diversity of 23 microsatellite markers in *T. japonicus* (through 2015)
Redistributions of *Trissolcus japonicus* within states

Over 60 egg clusters placed on 16 farms in 27 sites in 6 NY State counties in 2017 (Peter Jentsch)
APHIS policy on redistribution of *T. japonicus*

- APHIS regulates movement (including redistribution) *between* state lines but not *within* States.

- What is their policy about moving established adventive *T. japonicus* between states?
 - APHIS Permits Group has discussed permitting the movement of “feral” *T. japonicus* and made preliminary notes for a proposal to articulate what policy would be.
 - However, it was not finished or taken “up the line” for official approval.

- Further response from APHIS is pending…
Status of Petition for field release of *T. japonicus* (Beijing population)

- Non-target attack laboratory data required addition research to evaluate the effect of environment and parasitoid behavior on attack of non-targets

- Researchers in the U.S. and in Canada are proceeding with (hopefully) concurrent Petitions for Field Release
 - Time line: submission by this spring?
 - Concurrent approach may strengthen the case for approval
What is the impact of attack on non-target species?

- Host egg killed from stinging, but without oviposition, or partial (but unsuccessful) development of parasitoid

- Host egg killed with *occasional* full development and emergence of adult parasitoid

- Viable offspring, but mostly male

- Reproductive females produced

- *Exotic enemy* displaces a *native enemy*
T. japonicus Behavioral Assays
MSc thesis research of Sean Boyle, Univ. Delaware

Experimental Design

60 mm petri dish arena

Ethovision XT 8.0 (Noldus Technologies)
Mean Residence Time

<table>
<thead>
<tr>
<th>Plant Substrate</th>
<th>Red maple</th>
<th>Soybean</th>
<th>Apple</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. halys</td>
<td>P < 0.0001</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Podisus</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. halys</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Podisus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>H. halys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podisus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

- **H. halys** with **Red maple** is significantly different from the others at P < 0.0001.
- **Podisus** with **Soybean** is significantly different from the others at P < 0.0009.
- **Control** with **Apple** is significantly different from the others at P < 0.0003.
Mean Linear Walking Velocity

<table>
<thead>
<tr>
<th>Plant Substrate</th>
<th>Red maple</th>
<th>Apple</th>
<th>Soybean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kairomone</td>
<td>H. halys</td>
<td>Podisus</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>H. halys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podisus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* P < 0.0229

** P < 0.0229

P < 0.0229
Experimental Set-Up: No-choice tests

Kairomone contamination of *P. vulgaris* leaf surfaces with 2 gravid female stink bugs

Attach *H. halys* or *P. maculiventris* egg mass to contaminated plant

24 h exposure of *H*- or *P*-strain *T. japonicus* females (mated, naïve, 3-5 days old)
Searching in cage arena for egg mass

Single BMSB or Pmac Egg Mass exposed inside cage arena

Parent female *T. japonicus* reared from either BMSB or Pmac

Percent of Egg Masses Attacked

BMSB and *Pmac* egg masses attacked by *T. japonicus* reared from BMSB or Pmac host.
Fate of BMSB & Pmac eggs attacked by different *T. japonicus* parental strains

(T. japonicus parental host: exposed egg mass species)
Parasitoid Size
(using right hind tibia length as indicator)

- BMSB-host wasps possessed 30% longer HLT ($P < 0.0001$)
- BMSB-host wasps weighed over twice as much as Podisus-parent wasps ($P < 0.0001$)
- Strong positive correlation between $T. japonicus$ HTL length and weight ($R^2=0.957; P < 0.0001$)
Continuing research with *T. japonicus*

- What is the distribution of *T. japonicus*?
 - Continue deploying sticky traps farther afield
- Do Tj prefer to forage on some host plants compared with others?
 - Lab and semi-field assays
 - Host plant effects on % parasitism and attack rates
 - Response of Tj to host plant volatiles
 - Mark-release-recapture
- Where does Tj overwinter?
- Is Tj attacking non-targets?
Implications of adventive populations

- What will be impact of competition with indigenous parasitoids and predators? Will native natural enemies be affected negatively?

- How will they impact non-target stink bugs and other spp.?

- Several states already proceeding to redistribute populations within their boundaries.

- Given the adventive populations, should preparations be continued for a Petition to Release the Beijing quarantine population?
Comparison of parent female wasps reared from BMSB vs. SSB (*P. maculiventris*)

Parasitized Egg Masses

<table>
<thead>
<tr>
<th>Parental host species</th>
<th>Exposed egg mass species</th>
<th>n parasitized (> 50% parasitism)</th>
<th>% suitable egg masses</th>
<th>% Emerged parasitoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. halys</td>
<td>H. halys</td>
<td>18 (17)</td>
<td>94.4</td>
<td>84.8 ± 16.4</td>
</tr>
<tr>
<td>H. halys</td>
<td>P. maculiventris</td>
<td>6 (4)</td>
<td>66.7</td>
<td>69.2 ± 20.2</td>
</tr>
<tr>
<td>P. maculiventris</td>
<td>H. halys</td>
<td>22 (20)</td>
<td>90.9</td>
<td>73.7 ± 18.6</td>
</tr>
<tr>
<td>P. maculiventris</td>
<td>P. maculiventris</td>
<td>8 (3)</td>
<td>37.5</td>
<td>44.1 ± 26.5</td>
</tr>
</tbody>
</table>
Fate of Control BMSB Eggs in Field (within mesh cages)

- Hatched nymphs: 84%
- Unhatched nymphs: 9%
- Undeveloped: 5%
- Prior predation (in lab colony)

N = 115 egg masses with 3,125 eggs total
22 egg masses (19%) had 100% hatch of nymphs

Fate of BMSB Egg Controls Kept in Laboratory

- Hatched nymphs: 84%
- Unhatched nymphs: 10%
- Undeveloped: 4%
- Prior predation (in lab colony)

N = 62 egg masses with 1,677 eggs total
13 egg masses (21%) had 100% hatch of nymphs
Comparison of parent female wasps reared from BMSB vs. SSB (*P. maculiventris*)

Fate of host eggs in No-choice tests

- Egg mortality
- Hatched nymphs
- Emerged T.j

<table>
<thead>
<tr>
<th></th>
<th>HH</th>
<th>PH</th>
<th>HP</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg mortality (%)</td>
<td>22.9</td>
<td>27.5</td>
<td>53.1</td>
<td>63.2</td>
</tr>
<tr>
<td>Hatched nymphs (%)</td>
<td>16.3</td>
<td>7.5</td>
<td>28.6</td>
<td>22.4</td>
</tr>
<tr>
<td>Emerged T.j (%)</td>
<td>60.8</td>
<td>65.0</td>
<td>18.3</td>
<td>14.4</td>
</tr>
</tbody>
</table>
Regional surveys (ongoing) to document the occurrence & impact of natural enemies:

- Overall low levels of parasitism
- Impact varies according to habitat
- Predation is often more important than parasitism

Studies in conservation biological control to increase impact of native predators and parasitoids

- Border plantings, trap crops, insectary plants

Will native natural enemies adapt to BMSB over time?

- Why are native parasitoids poorly adapted to BMSB?
- Can adaptation be enhanced via laboratory selection?
F1 progeny from ≤ 24 hr. old Delaware & Beijing *T. japonicus* females, each given 16 BMSB egg masses successively (a new egg mass every 48 hours). Delaware *T. japonicus* had ~89% parasitism rate (~28 eggs per egg mass) for the first 8 days (4 egg masses) which then tapered off, while the Beijing *T. japonicus* did not exceed 38% parasitism rate over any 8 day period.

(preliminary data from Zach Schumm, UD)