Biology, Ecology, and Management of Brown Marmorated Stink Bug in Orchard Crops, Small Fruit, Grapes, Vegetables, and Ornamentals

Small Fruit Team

Principal Investigators

- Cesar Rodriguez-Saona (leader), Rutgers University
- Dean Polk, Rutgers University
- Vaughn Walton, Oregon State University
- Doug Pfeiffer, Virginia Tech University
- Bryan Butler, University of Maryland

Post-docs/Students

- Nik Wiman, Oregon State University
- Joyce Parker, Rutgers University
- Sanjay Barnet, Virginia Tech University

Characterizing damage of brown marmorated stink bug in OR and NJ blueberries

<u>Nik Wiman</u>, <u>Joyce Parker</u>, Vaughn Walton, Cesar Rodriguez-Saona, Zoe Milburn, Bryan Smith, Bernadine Strik, David Bryla, Chad Finn

Methods – Rutgers "Bag-a-bush"

Duke

Early maturing variety (Late June - Early July) High commercial value

Bluecrop

Mid maturing variety (July) High commercial value

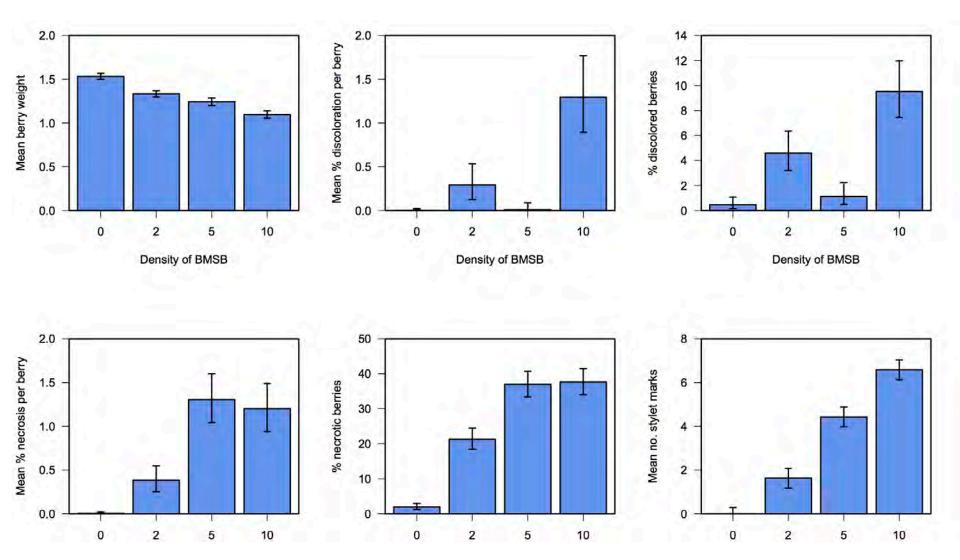
Aurora

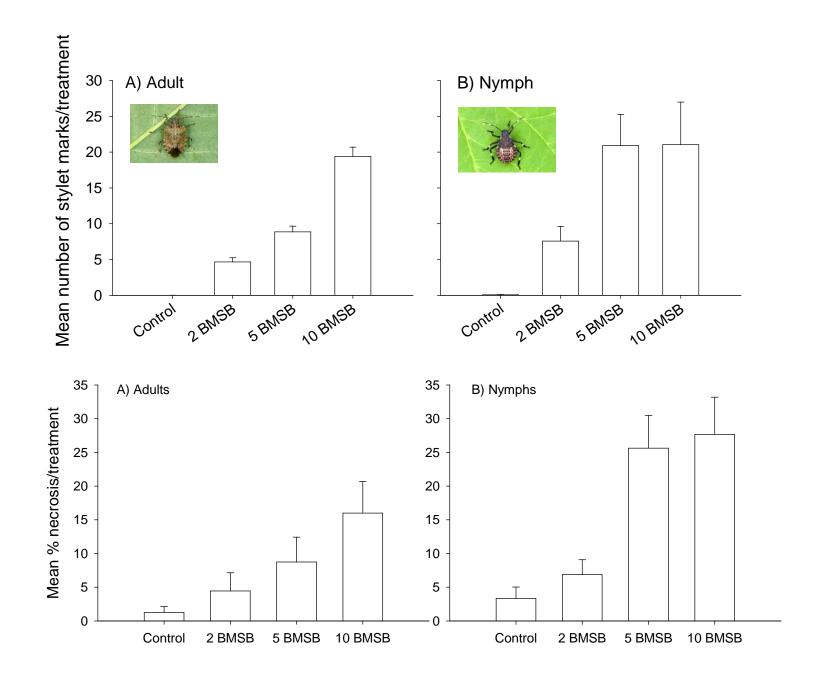
Late maturing variety (Early Aug - Early Sept) High commercial value

- OSU and NJ Research Farm, randomized block of blueberry varieties
- 10/clusters bush bagged with organza after fruit-set
 - Clusters thinned to 10 berries if needed
 - Exclude other insect damage
- 10 bushes/treatment (reps)
- Treatments: 0, 2, 5, 10/bugs per cluster
 - Field-collected bugs
- After one week of feeding, bugs moved to a new cluster
 - Dead BMSB replaced

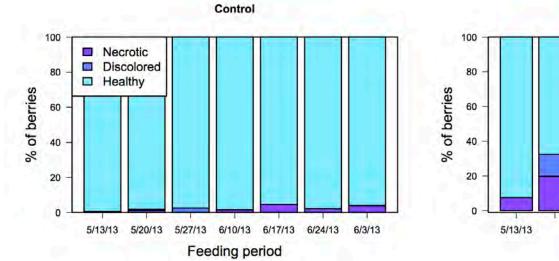
New Jersey

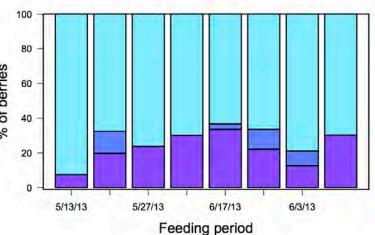
Oregon

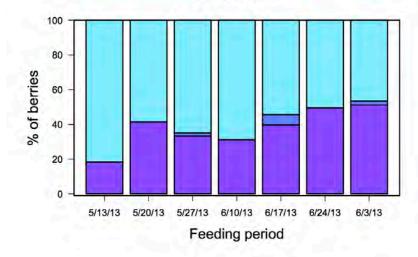

Analysis at harvest



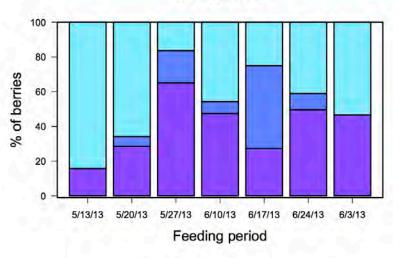
- Acid fuchsin dyed stylet sheaths
- Each berry weighed and examined
 - Necrosis
 - Discoloration
 - Number stylet sheaths




Significant damage effects on Duke



Damage Phenology



5 BMSB/Cluster

10 BMSB/Cluster

2 BMSB/Cluster

Fresh damage- Stylet sheaths and discoloration

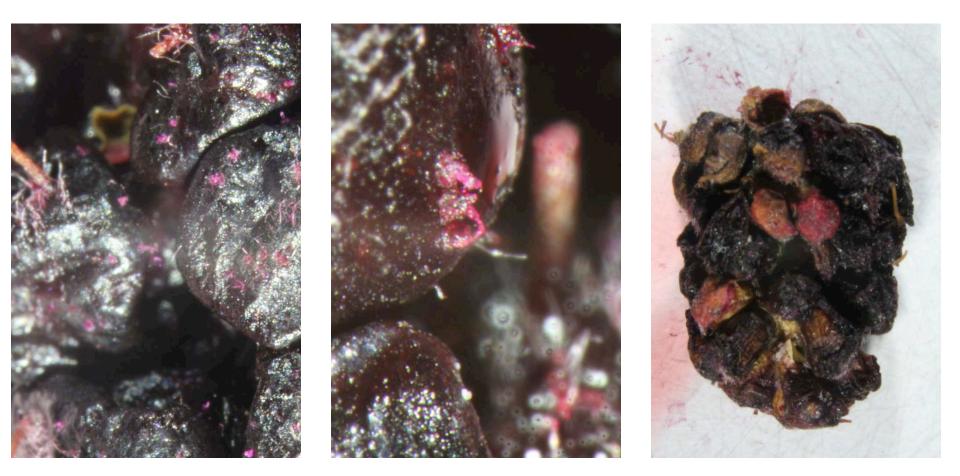
Fresh damage – mature berries

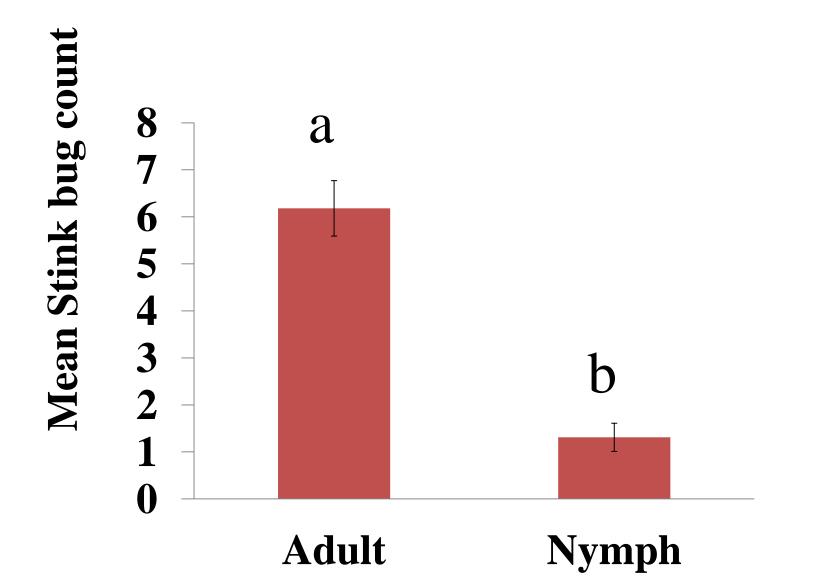
Mature damage - Shrivel and necrosis

Premature ripening


Unbagged clusters

Bagged clusters


BMSB quality effects: brix


All densities of BMSB resulted in significantly lower brix @ harvest

10.78 on 3 and 249 DF, *p*-value: 1.101e-06

Blackberry Damage

Pentatomids in Virginia Raspberries

Pentatomids in Virginia Raspberries

Year	Shannon-Weaver	Shannon's		
	diversity (<i>H'</i>)	equitability (E _H)		
• 2008	1.336	0.580		
• 2009	1.350	0.649		
• 2011	1.180	0.660		
• 2012	1.522	0.849		
• 2013	1.503	0.772		

Pentatomids in Virginia Raspberries

Stink bug species	2008	2009	2011	2012	2013
Brown marmorated stink bug	0.000	0.000	0.046	0.034	0.186
Brown stink bug	0.242	0.323	0.103	0.073	0.069
Twice stabbed stink bug	0.030	0.208	0.030	0.085	0.040
Dusky stink bug	0.440	0.007	0.003	0.014	0.020
Green stink bug	0.020	0.004	0.007	0.050	0.035
Harlequin bug	0.000	0.000	0.007	0.009	0.020
Spined soldier bug	0.000	0.000	0.010	0.000	0.000
One spotted stink bug	0.027	0.000	0.000	0.000	0.000
Red shoulded stink bug	0.017	0.000	0.000	0.000	0.000
Juniper stink bug	0.003	0.000	0.000	0.000	0.000
Thyanata calceata	0.003	0.000	0.000	0.000	0.000
Coenus delius	0.003	0.000	0.000	0.000	0.000
Basana calva	0.000	0.003	0.000	0.000	0.000
Dendrocoris humeralis	0.000	0.003	0.000	0.000	0.000
Rough stink bug	0.000	0.003	0.000	0.000	0.007
Hymenarcys nervosa	0.000	0.003	0.000	0.000	0.000

Summary

•BMSB feeds and (reproduces) in blueberries, raspberries, and blackberries. No damage by BMSB has been observed in cranberries.

- •BMSB populations in New Jersey blueberry farms remained low.
- •BMSB populations increased considerably in Oregon in north Willamette blueberry and caneberry farms.
- •Control measures have not been implemented.
- •Contamination risks are a great concern to growers.
- •In sensory analysis, subjects were able to detect BMSB contaminated blackberries.

•Droppings produced by stink bugs as they are feeding can add an unpleasant taste.

Summary (cont.)

- •In studies on blackberries at OSU, BMSB stylet feeding tubes were observed primarily on individual drupelets, also observed feeding between drupelets.
- •BMSB feeding tended to cause an increase in necrotic berries.
- In studies on blueberries at OSU and Rutgers, feeding tended to induce early ripening. Feeding caused increases in discoloration and necrosis, as well as significant decreases in brix at harvest.
- •Even low rates of feeding (2 BMSB/cluster/week) caused unacceptable high levels of damage to blueberries.