The information contained in this report is based upon work that was supported by the USDA National Institute of Food and Agriculture, Specialty Crop Research Initiative under award number 2016-51181-25409.
Table of Contents

Stakeholder Panel Meeting Agenda ... i
Project Goal and Objectives ... 1

Project Participants .. 3

Highlighted Summary Documents
 Objective 1: National Monitoring Program for BMSB 6
 Objective 1: BMSB Spread and Pest Status in Western Region 8
 Objective 2: Distribution and Range of Adventive of *Trissolcus japonicus* 10
 Objective 2: Impact of Native Natural Enemies ... 12
 Objective 3: Comparison of Pyramid and Sticky Panel Pheromone Traps 15
 Objective 3: Pheromone Traps as Pest Management Decision Aid Tools 18
 Objective 3: Insecticide Effects on Natural Enemies 20
 Objective 3: Attract and Kill Management Strategy 23
 Objective 3: Crop Perimeter Restructuring IPM (aka, border sprays) 25
 Objective 3: Pyrethroid-Incorporated Netting as a Management Tool 27
 Objective 4: Managing the Economic Consequences of BMSB Damage 29
 Objective 5: Outreach – Deliver New Information BMSB to Stakeholders 31

Project Outputs
 Journal Publications ... 33
 Proceeding/Abstracts ... 36
 Extension Publications ... 37
 Trade Journal Publications .. 38
 News/Print Broadcasts .. 39
 Conference Presentations ... 40
 Extension Presentations ... 48
 Conferences/Workshops .. 53
 Leveraged Funding ... 54
BMSB SCRI Stakeholder Advisory Panel Meeting
January 9, 2018, Hilton Portland Downtown, Portland, OR
Broadway III/IV

<table>
<thead>
<tr>
<th>Time</th>
<th>Lead Presenter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 – 8:30</td>
<td>Arrival</td>
<td>coffee, tea, cold drinks, fruit, scones</td>
</tr>
<tr>
<td>8:30-8:45</td>
<td>Jim Walgenbach</td>
<td>Introductions and purpose</td>
</tr>
</tbody>
</table>

Distribution and Pest Status
- **8:45 – 9:45**
 - Kent Daane/Diane Alston
 - Betsy Beers
 - Larry Gut
 - Mike Toews
 - Western Region
 - Pacific Northwest Region
 - Great Lakes Region
 - Southeastern Region
- **9:45-10:10**
 - Discussion and updating of distribution map

Biological Control
- **10:30-10:50**
 - Kim Hoelmer
 - Distribution and impact of *Trissolcus japonicus*, and status of petition to release quarantined populations.
- **10:50-11:05**
 - Nik Wiman
 - Efforts to redistribute adventive populations of *T. japonicus*.
- **11:05-11:20**
 - Rebecca Waterworth
 - Native natural enemies: variation among regions and habitats.
- **11:20-11:40**
 - Ann Hajek/Art Agnello
 - Microsporidia and other entomopathogens.

Management Strategies
Trapping and Insecticides
- **2:00-2:15**
 - Jim Walgenbach
 - Use of trapping for management decisions.
- **2:15-2:30**
 - Greg Krawczyk
 - Regional bifenthrin/thiamethoxam bioassay study.
- **2:30-2:45**
 - David Lowenstein
 - Insecticide effects on natural enemies.
- **2:45-3:00**
 - Discussion

Behavioral Based
- **3:00-3:15**
 - Anne Nielsen
 - Crop perimeter restructuring (aka border sprays).
- **3:15-3:30**
 - Tom Kuhar
 - Use of insecticide-impregnated netting.
- **4:00-4:15**
 - Tracy Leskey
 - Attract and kill.
- **4:15-4:30**
 - Discussion

Economics
- **4:30-4:45**
 - Jayson Harper
 - Update on survey to assess economics of biocontrol.

Outreach
- **4:45-5:00**
 - Chris Gonzales
 - Outreach activities and plans for 2018.
- **5:00-5:30**
 - Discussion and Wrap Up
Project Goal and Objectives

The overall goal of this project is to develop environmentally and economically sustainable management programs for the brown marmorated stink bug (BMSB) that focus on biological control and management strategies that are informed by landscape level risk and compatible with biological control. To achieve this goal, the following specific objectives have been set:

(1) Predict risk from BMSB damage through enhanced understanding of agroecology and landscape ecology.
 1a. Predict risk from BMSB damage through enhanced understanding of agroecology and landscape ecology.
 1b. Assess suitability of landscapes for BMSB based on host distribution.
 1c. Integrate landscape-level habitat maps and data on abiotic factors to predict BMSB distribution and risk.

(2) Implement widespread biological control of BMSB, incorporating exotic Asian parasitoids and native natural enemies.
 2a. Asian parasitoids
 i. Determine distribution/range of adventive T. japonicus in US.
 ii. Complete host range evaluations and petition for field release of quarantine T. japonicus.
 iii. Determine habitat preferences and role of kairomones in host location
 iv. Measure impact on BMSB populations and non-targets
 2b. Native parasitoids
 i. Document regional differences in key species of native parasitoids and impacts on BMSB and native stink bugs
 ii. Assess potential adaptation of native parasitoids to BMSB
 2c. Document regional and habitat differences in native predators impacts on BMSB populations.
 2d. Identify entomopathogens of BMSB that contribute to BMSB population regulation.

(3) Develop management tools and strategies that are compatible with biological control and informed by risk from landscape factors.
 3a. Develop decision support tools to assess BMSB abundance and to mitigate damage.
 i. Optimize trap design for monitoring and surveillance.
 ii. Determine the relationship between captures in traps and crop injury.
 3b. Identify effective uses of insecticides that minimize impacts on natural enemies.
 i. Evaluate new insecticides and threat of resistance
 ii. Impact of insecticides on natural enemies.
 3c. Improve agroecosystem sustainability through spatially focused management or habitat manipulation.
 i. Impact of behaviorally-based management on BMSB and natural enemies.
ii. Refine and expand trap crop utilization within the agroecosystem.

iii. Conserve beneficial insects to enhance biological control of BMSB.

3d. Integrate IPM tools across landscape factors.

(4) Managing the Economic Consequences of BMSB Damage.

4.a. Assess economic potential of biological control of BMSB on specialty crops.

4.b. Develop estimates of the cost and benefits of specific management practices for BMSB.

4.c. Assist with the development of program evaluation tools including survey instruments.

(5) Outreach Plan – Deliver new information on BMSB to stakeholders.

5.a. Inspire the next generation of invasive pest experts.

5.b. Build upon existing BMSB outreach resources, develop and maintain a knowledge repository that captures lessons, insights, and success stories over time.

5.c. Expand relevancy of BMSB outreach resources to all U.S. regions.

5.d. Evaluate social benefits of improved conditions resulting from increased awareness and knowledge of sustainable practices and their adoption.
Project Participants

Project Director: Jim Walgenbach, NC State University*

Co-Project Directors:
- Betsy Beers, Washington State University*
- Kent Daane, University California-Berkeley*
- Larry Gut, Michigan State University*
- Tom Kuhar, Virginia Tech
- Tracy Leskey, USDA-ARS*
- Mike Toews, University of Georgia*

Co-Project Investigators:

Great Lakes Region
- Art Agnello, Cornell University*
- Ann Hajek, Cornell University
- Peter Jentsch, Cornell University
- Steve Young, NE IPM Center
- Julianna Wilson, Michigan State University
- Celeste Welty, Ohio State University*
- Bill Hutchison, University of Minnesota*
- Bob Koch, University of Minnesota

Southeast Region
- George Kennedy, NC State University
- Dominic Reisig, NC State University
- Ric Bessin, University of Kentucky*
- John Obrycki, University of Kentucky
- Raul Villanueva, University of Kentucky
- Ashfaq Sial, University of Georgia

West Region
- Frank Zalom, University California-Davis*
- Mark Hoddle, University California-Riverside*
- Monica Cooper, UC Cooperative Extension
- Diane Alston, Utah State University*
- Lori Spears, Utah State University

Mid-Atlantic Region
- Paula Shrewsbury, University of Maryland*
- Cerruti Hooks, University of Maryland
- George Hamilton, Rutgers University*
- Anne Nielsen, Rutgers University
- Greg Krawczyk, Penn State University*
- Jayson Harper, Penn State University
- Chris Bergh, Virginia Tech*

Pacific Northwest Region
- Nik Wiman, Oregon State University*
- Richard Hilton, Oregon State University
- Clive Kaiser, Oregon State University
- Vaugh Walton, Oregon State University
- David Crowder, Washington State University

USDA-ARS
- Kim Hoelmer, USDA-ARS, Newark, DE
- Jana Lee, USDA-ARS, Corvallis, OR
- Don Weber, USDA-ARS, Beltsville, MD

Objective Leaders:
- Objective 1, David Crowder
- Objective 2a-c, Kim Hoelmer
- Objective 2d, Ann Hajek
- Objective 3, Anne Nielsen
- Objective 4, Jayson Harper
- Objective 5, Steve Young

Extension Committee:
- Art Agnello
- Diane Alston
- Ric Bessin
- George Hamilton
- Jayson Harper
- Steve Young
- Chris Gonzales
- Kevin Judd
- Yifen Liu
- Nik Wiman

Project Manager: Emily Ogburn, NC State University

1 Names with * serve as Institutional Leaders responsible for local budgets and submission of reports.
Collaborators:

Matthew Baur, Assoc. Director, Western Region IPM Center, Davis, CA
James Becnel, Research Entomologist, USDA-ARS, Gainesville, FL
Marie-Claude Bon, Molecular Biologist, USDA-ARS, Montpellier, France
Chuck Ingle, Farm Advisor, UNC-ANR, Sacramento, CA
Shimat Joseph, IPM Advisor, UNC-ARN, Salinas, CA (now Univ Georgia)
Gary Keough, State Statistician, USDA-NASS, Concord, NH
Ashot Khrimian, Research Chemist, USDA-ARS, Beltsville, MD
Joeseph LaForest, Co-Director, Southern Region IPM Center, Tifton, GA
Susan Ratcliffe, Co-Director, North Central IPM Center, Urbana, IL
Jhalendra Rijal, IPM Advisor, UC-ANR, Modesto, CA
Leelen Solter, Interim Director, Illinois Natural History Survey, Urbana, IL
Emily Symmes, IPM Advisor, UC-ARN Oroville, CA
Elijah Talamas, Florida Dept of Agriculture and Consumer Services, Gainesville, FL
Doug Walsh, Professor, Washington State University, Prosser, WA

Post-doctoral Researchers:

Christopher Adams, Michigan State University
Juan Huang, Michigan State University
Joseph Kaser, Rutgers University
Clement Akotsen-Mensah, Rutgers University
Alan Leslie, University of Maryland
Rebeccah Waterworth, University of Maryland
Javier Gutierrez Illan, Wash State University
Joanna Fisher, University California-Davis
Jesus Lara, University of California-Riverside
Sriyanka Lahiri, University of Georgia
David Lowenstein, Oregon State University
Angel Acebes-Doria, USDA-ARS, Kearneysville
Kevin Rice, USDA-ARS, Kearneysville, WV
Byju Govindan, University of Minnesota

Graduate Students:

Carrie Preston, Cornell University
Hillary Morin, Penn State University
Nicole Quinn, Virginia Tech/USDA
Whitney Hadden, Virginia Tech/USDA
Hayley Bush, Virginia Tech
Ben Chambers, Virginia Tech
Hailey Shanovich, University of Minnesota
Daniela Pezzini, University of Minnesota
Lauren Fann, University of Kentucky
Caroline Fisher, University California-Davis
Thomas Ohmen, NC State University
Sean Boyle, USDA-ARS/Univ Delaware
Tyler Hagerty, USDA-ARS/ Univ Delaware
Adam Formella, Virginia Tech
Cody Holthouse, Utah State University
Zachary Schumm, Utah State University
Adrian Marshall, Washington State University
James Hepler, Washington State University
Joshua Milnes, Washington State University

Additional Participants (Researchers, Res. Associates, Res. Specialists, Technicians, etc.):

Mid-Atlantic Region

Dean Polk, Rutgers University
Sally Taylor Virginia Tech
Jean Engleman, Virginia Tech

Pacific Northwest Region

Heather Andrews, Oregon State University
Mike Bush, Washington State University
Gwen Hoheisel, Washington State University
Great Lakes Region
Dave Combs, Cornell University
Tessa Grasswitz, Cornell Coop Ext
Mike Haas, Michigan State University
Erica Nystrom, University of Minnesota
Nancy Cusumano, Northeast IPM Center
Sarah Holle, University of Minnesota

Southeast Region
Emily Goldsworthy, NC State University
Mohammad-Amir Aghaee, NC State Univ
Emily Ogburn, NC State University
Steve Schoof, NC State University
Jessica Ditillo, NC State University
Brett Blaauw, University of Georgia
Yaziri Gonzalez, University of Kentucky

West Region
Lucia Varela, UC Cooperative Extension
Rachel Elkins, UC Cooperative Extension
Rachel Freeman Long, UC Cooperative Ext
Surendra Dara, UC Cooperative Extension
Ian Grettenberger, UC-Davis
Stacy Rick, UC-Davis
Kevin Goding, UC-Davis

USDA/ARS
Hannah McIntosh, Hort Crops Res, Covallis,OR
Kathy Tatman, Biocontrol Lab, Newark, DE
Megan Herilhy, Biocontrol Lab, Newark, DE
John Cullum, AFRS, Kearneysville, WV
Sharon Jones, AFRS, Kearneysville, WV
Tori Hancock, AFRS, Kearneysville, WV
Matt Buffington, SEL, Washington, D.C.

Stakeholder Advisory Panel:
Amy Irish-Brown, Michigan State University Cooperative Extension, Grand Rapids, MI
Andy Fellenz, Northeast Organic Farming Assoc. of New York, Inc., Farmington, NY
Becky Ellsworth, Allred Orchards, Payson, UT
Bob McClain, California Pear Advisory Board, Sacramento, CA
David Epstein, USDA Office of Pest Management Policy, Washington, DC
Diane Smith, Michigan Apple Committee, Lansing, MI
Eric Bohnenblust, Office of Pesticide Programs, Registration US-EPA, Arlington, Virginia
Gene Klimstra, Crop Protection Consultant, Hendersonville, NC
Greg Nix, Apple Wedge Packers, Hendersonville, NC
Jeff Cook, University of Georgia Cooperative Extension, Butler, GA
Kay Rentzel, US Peach Council, Dillsburg, PA
Ken Martin, Furmano’s Foods, Northumberland, PA
Kenner Love, Virginia Cooperative Extension, Washington, VA
Lynnae Jess, North Central IPM Center, Michigan State University, East Lansing, MI
Mark Seetin, US Apple Association, Falls Church, VA
Mike Devencenzi, Ag Pest Management & Research Consultant, Lodi, California
Mike Willett, Washington Tree Fruit Research Commission, Wenatchee, WA
Peter McGhee, FMC Agricultural Solutions, Corvallis, OR
Robyn Rose, USDA-APHIS, Washington D.C.
Ted Cottrell, USDA, Agricultural Research Service, Byron, GA
Tracy Armstrong, Glaize Apples, Winchester, VA
Tracy Miller, Mid Valley Agricultural Services, Linden, CA
Objective 1: Predict risk from BMSB damage through enhanced understanding of agroecology and landscape ecology.

Project: National monitoring program for BMSB

Background: A goal of Objective 1 is to develop tools that predict where BMSB will become established and to what extent it will develop into a key pest of specialty crops. Two key factors anticipated to mediate establishment, as well as variation in population dynamics within established regions, include climate and host plant availability. Host plants include not only specialty crops, but alternative crops (e.g., soybean, corn, cotton) and non-managed habitats (e.g., wooded areas, ditch banks). The first step in developing ecological models to predict BMSB abundance and phenology, is to understand its current distribution and environmental and plant fauna associated with population fluctuation across the various ecoregions where BMSB is predicted to be problematic (Fig. 1).

What was Done: A nationwide network of pheromone traps (Fig. 2) was established to monitor BMSB abundance and phenology on a regional basis, and to detect expansion of BMSB into new areas. A summary of the network is shown below. A total of 268 trapping sites were monitored across 15 states and over 25 ecoregions, with a total of 26 PIs participating in the objective. A trapping site consisted of a unique location with 3 sticky panel traps baited with BMSB pheromone and synergist (MDT) deployed at the interface of wooded habitats and host crops. Each of the nearly 800 traps were monitored from early spring into the fall.

| Objective 1: Predict risk from BMSB damage through enhanced understanding of agroecology and landscape ecology. |

<table>
<thead>
<tr>
<th>States</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research groups</td>
<td>26</td>
</tr>
<tr>
<td>Sampling sites</td>
<td>268</td>
</tr>
<tr>
<td>BMSB individuals trapped</td>
<td>2066</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climatic Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean tp (°C)</td>
</tr>
<tr>
<td>Minimum tp (°C)</td>
</tr>
<tr>
<td>Maximum tp (°C)</td>
</tr>
<tr>
<td>Precipitation (mm)</td>
</tr>
<tr>
<td>Elevational range (m)</td>
</tr>
<tr>
<td>Land-use (within 5K buffer)</td>
</tr>
</tbody>
</table>
Result:

To date we have been highly successful in establishing a standardized nationwide monitoring effort for BMSB. Our sampling network encompasses both regions where BMSB is already well established (eastern and northeastern US states) as well as regions where BMSB is not yet established but has high potential for invasion (west coast, upper Midwest). Data from 2017 shows a high degree of variation in the abundance of BMSB throughout the USA (Fig. 3).

We will continue the sampling network in the coming years, which will provide a comprehensive dataset showing variation in BMSB abundance across many locations and time points. These data will be incorporated into geographical information systems software to explore ecological and environmental factors affecting BMSB population dynamics and invasion risk. We expect to make progress on these analyses in 2018, but will complete them when all data is collected.

Figure 3. Graphical depiction of the BMSB trap catches from 2017. The different size circles represents the number of BMSB captured at each sampling location. As can be seen, populations were highest in the coastal states of NC and Virginia, and diminished further inland. Populations were generally low in the upper Midwest and the west coast and in Utah (areas actively being invaded), although BMSB was detected at most sampling locations at low density. As the project moves forward, we will integrate maps of habitat and environmental factors to explore how they affect BMSB abundance.
Objective 1: Predict risk from BMSB damage through enhanced understanding of agroecology and landscape ecology.

Project: BMSB Spread and pest status in Western Region (CA & UT)

Background: The western region of the US is an area where BMSB is currently expanding into new areas and where high-value specialty crops are at risk. In California, BMSB was first detected in 2006 in Pasadena and San Marino, but those populations appear to have shown limited capacity for expansion. In 2013, a substantial population was observed in Sacramento, and subsequent detections in more rural areas have raised concerns about movement into agricultural areas. In Utah, BMSB was first detected in 2012 in Salt Lake City, and by 2016 it was causing nuisance problems in northern Utah.

What was Done: Studies were conducted to help characterize BMSB damage symptoms on new specialty crops not previously exposed to the pest. To monitor the spread and pest status of BMSB, a network of pheromone traps in both states were established and monitored from the spring through autumn in cooperation with extension personnel in both urban and agricultural areas.

Results: In Utah, BMSB is now considered to be established in the northern counties of Box Elder, Weber, Davis Salt Lake and Utah, and has been detected, but is not yet established in Cache County. Economic crop damage was observed for the first time during 2017 on peach, apple, popcorn and squash. Crop injury occurred in commercial fruit orchards in Weber, Salt Lake and Utah counties; whereas vegetable crop injury was detected in a large suburban community garden in Salt Lake City. Surveys for host plant use in the suburban-agriculture landscapes of northern Utah found BMSB life stages residing 49 species from 20 plant families. The most common plant families and those with the highest BMSB populations included Aceraceae (maple, boxelder), Bignoniaceae (catalpa, trumpet vine), Fabaceae (Siberian pea shrub, locust), Oleaceae (privet, lilac), and Rosaceae (apple, cherry, peach, plum).
In California, BMSB is now established in 9 counties and has been detected in an additional 29 counties. Specialty crops of concern at this time include almonds, stone fruits and vineyards in Northern California. Damaging populations in almonds in 2017 represent the first report of BMSB damage to this crop; approximately 2.8% of nuts were damaged in this orchard. Laboratory feeding studies have also demonstrated that BMSB can injury citrus and avocados.
Objective 2. Implement widespread biological control of BMSB, incorporating exotic Asian parasitoids and native natural enemies.

Project: Distribution and range of adventive populations of *Trissolcus japonicus*.

Background: *Trissolcus japonicus*, commonly referred to as the samurai wasp, is an exotic parasitic wasp that is an important natural enemy of BMSB in its native Asian range. *T. japonicus* is an egg parasitoid that deposits its eggs into BMSB eggs, and whose progeny then consume the egg and emerge as adults. In its native Asian range, *T. japonicus* typically parasitizes 60-90% of BMSB eggs, and is an important biological control agent that helps maintain populations at low levels. This parasitoid was selected as a candidate for a classical biological control program of BMSB in the US, and has been undergoing risk analysis studies in quarantine laboratories at the USDA Biological Control Laboratory in Newark, DE, and cooperating labs in Oregon, Michigan, Florida and California. These tests are now largely complete and a petition to release *T. japonicus* in the US is in preparation for review by USDA-APHIS.

While conducting surveys for native natural enemies attacking BMSB, BMSB eggs parasitized by *T. japonicus* were detected at several US locations in 2014, 2015 and 2016. Genetic testing showed that these “adventive” populations were different from those in quarantine culture for risk evaluations. Although it is unknown how these adventive populations arrived in the US, their spread and impact on BMSB and native natural enemies is being actively monitored.

What was Done: Surveys were conducted across the US to detect new adventive populations of *T. japonicus* and to monitor its spread from previously areas of detection. Several different methods were used to monitor *T. japonicus*, including deployment of laboratory reared sentinel egg masses, collection of wild egg masses from managed and non-managed habitats, and the use of yellow sticky cards. In New York and Oregon, efforts were also undertaken to redistribute adventive populations and enhance their establishment by rearing parasitoids in the laboratory and releasing them in different areas of their states.

Sentinel egg masses from BMSB laboratory colonies are deployed in crops and wooded habitats. Both frozen and fresh egg masses can be used.

Virginia Tech students collecting naturally laid eggs from felled *Ailanthus altissima* tree (tree of heaven).
Results: In 2017, there have been several new *T. japonicus* detections; all were in regions where it had been detected in previous years, including the Pacific Northwest and mid-Atlantic states. Emergence of *T. japonicus* from a sentinel egg mass in a New Jersey peach orchard was the first detection from an agricultural setting. Detection near Walla Walla, Washington, is considered significant, because the arid shrub-steppe habitat in this area is dramatically different than previous detections near the temperate coastal region. Several of the new detections in Oregon in 2017 were in association with efforts to re-distribute the parasitoid. A detection in southeastern Pennsylvania is the first record from that state. These recoveries demonstrate that *T. japonicus* has established in these areas and its populations are expanding. Surveys in several areas have shown that parasitism of BMSB eggs by *T. japonicus* is increasing. Laboratory studies demonstrated that *T. japonicus* have a clear preference for BMSB eggs when compared with *Podisus maculiventris* (the spined soldier bug, SSB), an agriculturally important predatory stink bug. These studies found that *T. japonicus* responded to the presence of BMSB and SSB kairomones on leaf surfaces by searching longer and more intensively for BMSB than for SSB. In addition, BMSB egg masses were attacked more successfully by female wasps, with higher rates of progeny produced.
Objective 2. Implement widespread biologic control of BMSB, incorporating exotic Asian parasitoids and native natural enemies.

Project: Impact of native natural enemies: Regional complexes and habitat differences.

Background: A major goal of this project is to maximize the impact of biological control agents – both exotic egg parasitoids, native parasitoids and predators – on BMSB populations. As a landscape level insect that is highly mobile and utilizes a diversity of managed and non-managed habitats, biological control may be the most powerful population regulatory factor at our disposal. Understanding the identity and impact of complexes of native natural enemies among different locations and habitats is critical to maximizing their impacts across agroecosystems.

What was Done: This research was complementary to monitoring for *T. japonicus* across the country. Sentinel egg masses (fresh and frozen), collection of naturally laid BMSB eggs, and yellow sticky cards were used to monitor for native natural enemies and to assess their impact in different habitats. Participation included 15 co-PIs representing 13 states in all regions of the country. Habitats monitored included specialty and field crops, landscape ornamentals, and non-managed wooded areas in both urban and rural sites. Sentinel and wild eggs were retrieved from the field and eggs were assessed for parasitism and predation (both chewing and sucking predators), and held to allow parasitoids to emerge. All non-hatched eggs were then dissected to look for evidence of parasitism (e.g., partially developed parasitoid).

Results: (summarized by R. Waterworth and P. Shrewsbury, UMD): Results presented below have been summarized from partial data that was submitted to date for 2017. Not all collaborators submitted data, and of those that did, not all sample results have been processed. Therefore, these are preliminary results which may change when the dataset is completed.
Data have been analyzed by region and habitat category. States that submitted data within each region include: West (Utah), Pacific Northwest (Washington, Oregon), Southeast (Kentucky, North Carolina), and Mid-Atlantic (Maryland, Delaware, Pennsylvania, Virginia). Habitat categories include: semi-natural (campuses, parks), forests (wooded edges), ornamentals (nurseries, and urban landscapes), orchards (cherry, peach, apple, hazelnut), and field/vegetable crops (corn, soybean, peppers). Results are presented from two types of sentinel egg masses: fresh and frozen. A survey is a unique combination of researcher, sampling period within 2017, habitat category, and egg mass type.

Fig. 1 – summary points
- Parasitoids from three insect families emerged from egg masses in five habitats
- *Anastatus* species were most prevalent in forests and semi-natural habitats
- *Trissolcus* species dominated ornamentals and orchards, with non-native *Tr. japonicus* most prevalent in ornamentals
- Highest diversity (# of species) emerged from egg masses in semi-natural habitats (campuses, parks)

Figure 1. Relative prevalence of parasitoids emerged from fresh sentinel BMSB egg masses used in surveys in each of five habitat categories (n = number of surveys). For each category, species are color-coded by parasitoid genus. Dark-blue hashed bars denote the prevalence of *Trissolcus japonicus*, a non-native parasitoid species. All other species are native (solid colors).

Figure 2. Relative prevalence of parasitoids emerged from both fresh and frozen sentinel BMSB egg masses used in surveys in four regions (n=number of surveys). Species are color-coded by parasitoid genus.
Fig. 2 - summary points
- Non-native *Tr. japonicus* was only collected in the Pacific NW and Mid-Atlantic
- *Anastatus* spp. were most prevalent in Southeast and Mid-Atlantic regions
- Highest diversity of species in the mid-Atlantic

![Figure 2](image)

Fig. 3 – summary points
- Parasitoid emergence and partial parasitoid development were low overall, though slightly higher in frozen eggs
- Predation of fresh egg masses by complete chewing was low overall, though reported means reached > 50%
- Similar to other studies, predation was higher on frozen egg masses

Conclusions:
- Preliminary results from the 2017 field season support previous work that certain parasitoid species are more prevalent in specific habitats, though the same species occur in different habitats.
- Parasitoids of BMSB were heavily surveyed in the mid-Atlantic region.
- The combination of parasitoid emergence, partial parasitoid development, and predation by complete chewing of fresh egg masses was low overall. Predation values are underestimated as other types of egg feeding were not included in this analysis.
- Need to incorporate additional 2017 data and sample over multiple years to elucidate more robust patterns in habitat preferences and regional occurrence
Object 3. Develop management tools and strategies that are compatible with biological control and informed by risk from landscape factors.

Project: Comparison of pyramid and sticky panel pheromone traps across the USA.

Background: Standard black pyramid traps, baited with BMSB pheromone and pheromone synergist, have proven to be effective for monitoring BMSB populations throughout the growing season. However, their size and bulkiness make them time-consuming to deploy and unsuitable for some cropping systems. The goal of this objective was to evaluate a simpler, more user friendly trap that can be used as an alternative to the standard pyramid trap. Previous work indicated that sticky panel traps mounted on 4-foot stakes and baited with standard Trécé BMSB dual lures (murgantiol+MDT) were promising replacements for pyramids. A national comparison of sticky traps to pyramids was conducted to test their relative sensitivity and efficiency.

What was done: Trap comparisons were conducted in >50 locations located in over 14 states. Most trapping sites were at the interface between BMSB-susceptible crops and woods containing wild BMSB host plants (Fig. 1). The traps in Utah were deployed in residential areas with known BMSB host plants. Each trapping site consisted of 3 pyramid and 3 sticky traps deployed in a line at 50-meter intervals. All traps were baited with standard BMSB Trécé lures + MDT synergist and checked weekly from spring through fall. Mean weekly captures between pyramid and sticky traps across sites were analyzed using Repeated Measures ANOVA, and Pearson Correlation was used to examine the relationship between captures in pyramid and sticky panel traps. The season-long analysis was done from May 29 to October 6. To compare sensitivity of the traps at various points in the season, the trapping period was divided into early (April 17 to June 16), mid (June 17 and Aug 11) and late (August 12 to October 20) and captures were analyzed among sites during these periods. Due to unequal trapping periods among some sites, only certain sites were used during analyses.
Results:

Season-long captures in pyramid and sticky panel traps across the USA are shown in Fig. 3. Captures of BMSB adults and nymphs across 47 sites from May 29 to October 6 were significantly greater in pyramid vs. sticky panel traps (Figure 4, adults: $F_{1,152} = 26.0493, P > 0.0001$; nymphs: $F_{1,153} = 6.1562, P = 0.0142$). Also, there were significant positive correlations between weekly captures in pyramid and sticky panel traps for both adults and nymphs (Fig. 4).

Sticky Trap

Pyramid Trap

Fig. 3. Season long captures of adult BMSB at various trapping sites. 2017.

Fig. 4. Season-long BMSB captures in pyramid and sticky traps across all sites.

Fig. 5. Pearson correlation coefficients between season-long pyramid and sticky panel traps.
Adult captures were significantly greater in pyramid vs sticky traps in the early season (Fig. 6, \(F_{1,93} = 6.87, P = 0.0103 \)), as were adult and nymphs in the late season (adults: \(F_{1,210} = 2.0, P = 0.159 \); nymphs: \(F_{1,210} = 3.88, P = 0.05 \)). No significant differences were detected in the mid-season period (adults: \(F_{1,210} = 2.0, P = 0.159 \); nymphs: \(F_{1,210} = 3.88, P = 0.05 \)). Importantly, significant positive correlations between pyramid and sticky traps for both adults and nymphs occurred during the early, mid and late season (Fig. 7).

In summary, pyramid traps captured numerically higher numbers of BMSB than sticky panel traps, but significant positive correlations between their captures indicate that sticky panel traps are equally effective in detecting BMSB presence, abundance and seasonal activity of BMSB throughout the season.

Fig. 6. Seasonal BMSB captures on pyramid and sticky panel traps. * denotes significant differences between trap types.

Fig. 7. Pearson correlation coefficients between pyramid and sticky panel traps at different times of the year.
Object 3. Develop management tools and strategies that are compatible with biological control and informed by risk from landscape factors.

Project: Pheromone traps as pest management decision aid tools in specialty crops.

Background: Identification of the BMSB male-produced aggregation pheromone and the synergistic action of methyl decatrienoate (MTD), the aggregation pheromone of the related Asian stink bug *Plautia stali*, provided the essential tools for season-long monitoring of both BMSB adults and nymphs. Use of these olfactory cues in combination with a black pyramid trap proved to be a highly attractive trap across a diversity of climates and landscapes. The ability to effectively monitor BMSB created the opportunity to develop monitoring programs to improve the pest control decision process. Indeed, USDA-ARS studies in WV apples in 2013 and 2014 demonstrated that applying insecticides for BMSB based on a pyramid trap threshold of 10 bugs/trap led to a 40% reduction in insecticide use with concomitant increase in damage compared to grower standards.

What was Down: Following the success of pheromone traps for dictating sprays in WV apples, studies were initiated to expand this technology to other areas of the control, different cropping systems, and to more clearly interpret the relationship between BMSB pheromone trap captures, population abundance in crops, and crop damage. In 2017, research was conducted on apples in NC and WV, peaches in NJ, sweet corn in Ohio, and peppers in VA. All of this work was aimed at using pheromone trap captures to make informed pest management decisions, primarily by optimizing insecticide applications.

Results: Initial results with experiments at Virginia Tech to correlate BMSB trap captures with both BMSB populations and damage in peppers show promising results. There was a positive relationship between trap captures and BMSB counts on adjacent pepper plants. Also, when testing traps for use in triggering insecticide applications, a trap capture threshold of five bugs/trap reduced insecticides from an average 6 in the weekly spray treatment to only two in the trap threshold treatment, with no significant reduction in crop damage. This research will be expanded in 2018 to evaluate this threshold concept over a broader geographic range.
In NC apples, studies examined the capture of BMSB in traps on the periphery of orchards adjacent to wooded areas and in the interior of 14 commercial orchards over a two-year period, and found no difference in exterior vs interior orchards, except that few nymphs were captured in the interior of the orchard. Surprisingly, there was no statistical relationship between pheromone trap captures and damage levels in orchards. The fact that orchards were sprayed with insecticides for BMSB may help to explain instances of low damage/high capture, but not the opposite. It is also possible that other factors may have affected BMSB capture in traps, such as nearby attractive host plants.

Recently, the use of panel sticky traps has become a popular alternative to the standard pyramid trap as a more user friendly alternative to the standard pyramid trap, and on-going studies are correlating captures of the two types. In addition, cooperative studies between the USDA-ARS and Michigan State University are investing the active space of a BMSB pheromone trap, and factors influencing trap captures.
Objective 3. Develop management tools and strategies that are compatible with biological control and informed by risk from landscape factors.

Project: Examining insecticide effects on natural enemies of BMSB.

Background: Native natural enemies provide valuable biological control of agricultural insect pests, such as BMSB. BMSB is a new threat to crops in the US, necessitating increased use of broad-spectrum insecticides. Reliance on these products is not compatible with the needs of IPM or organically-certified programs. Information is needed on the role of native natural enemies in biological control and how to conserve natural enemies in agricultural systems.

What was Done: Laboratory bioassays were conducted in two laboratories to evaluate the effects of insecticides two parasitoids of BMSB; in NC the native species *Anastatus reduvii* and *Telenomus podisi* was tested against four different OMRI-approved insecticides at 0.1, 0.5 and 1X field rates, and in OR the Asian parasitoid was tested against 1 OMRI and 4 conventional insecticides. In NC, adult parasitoids were exposed to dried pesticide residues on filter paper and checked for mortality 24 and 48 hrs post-setup. In Bioassay 2, feeding treatments were set-up with <24 hr old *A. reduvii* placed individually in vials with insecticide-laced sucrose as the sole food source. Bioassay 3 examined adult emergence from parasitized egg masses saturated with insecticide treatments and allowed to dry. In OR, *T. japonicus* was exposed to dried insecticide on glass slide held within Munger cells. old) inside each Munger cell. There were a minimum of 10 replicates for each compound. Mortality was assessed at 1, 2, 4, 6, and 24 hours, after which surviving adults were presented with BMSB egg masses.

<table>
<thead>
<tr>
<th>Insecticides tested against parasitoids in NC and OR.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anastatus reduvii (NC)</td>
<td>Trissolcus japonicus (OR)</td>
</tr>
<tr>
<td>Entrust (spinosad)</td>
<td>Entrust (spinosad)</td>
</tr>
<tr>
<td>Neemix (azadirachtin)</td>
<td>Actara (thiamethoxam)</td>
</tr>
<tr>
<td>Pyganic (pyrethrin)</td>
<td>Asana (esfenvalerate)</td>
</tr>
<tr>
<td>Azera (pyrethrin + azadirachtin)</td>
<td>Admire (imidacloprid)</td>
</tr>
<tr>
<td></td>
<td>Altacor (chlorantraniliprole)</td>
</tr>
<tr>
<td></td>
<td>Exirel (cyantraniliprole)</td>
</tr>
</tbody>
</table>

*OMRI approved
Results (NC):

When exposed to dried residue of Entrust on substrate in Bioassay 1, Entrust exhibited the highest toxicity to both parasitoid species. Other than low levels of mortality caused by Pyganic against A. reduvii, none of the other insecticides exhibited toxic effects. In Bioassay 2, ingestion of all insecticide-laced sucrose treatments, with the exception of 0.1X Neemix, resulted in reduced longevity of Anastatus reduvii compared to the control. Finally, in Bioassay 3 significantly fewer parasitoids emerged from eggs submerged in 1X Entrust versus all other treatments for both species (T. podisi: DF= 9, F= 5.76, P <.0001). Emergence of A. reduvii from eggs treated with 0.5X Entrust, and 0.5X and 1X PyGanic was significantly lower than the Control (DF= 9, F= 47.83, P <.0001). Bioassay 4 showed that emerged females from eggs treated post-parasitism had a significantly shorter lifespan in 1X Entrust treatments than all other treatments. In general, Entrust (active ingredient: Spinosad) and in some cases PyGanic (Pyrethrin), especially at higher doses, had negative impacts on both parasitoids.

Fig. 1. Bioassay 1 Mean percent mortality of A. reduvii (left) (24 hrs: DF= 8, F= 321, P <.0001; 48 hrs: DF=8, F=327, P <.0001) and T. podisi (right) (24 hrs: DF=10, F= 526, P <.0001; 48 hrs: DF=10, F= 488, P <.0001) 24 and 48 hrs post exposure to dried insecticide on substrate.

Fig. 2. Bioassay 2 Mean longevity of A. reduvii post-exposure to insecticide-laced sucrose (DF= 8, F= 9.84, P <.0001).

Fig. 3 Bioassay 4 Percent daily survival of all emerged female A. reduvii (left) (DF= 9, F= 120.30, P <.0001) and T. podisi (right) (DF= 9, F= 21.39, P <.0001) from parasitized egg masses submerged in Bioassay 3 treatments.

Results (OR):

More than 50% of wasps died within an hour of being exposed to Actara, Asana, and Admire Pro (2.8 fl oz / acre only). After 24 hours, mortality in all treatments, except for Altacor, was above
75% and significantly greater than the control (DF = 7, F = 51.1, P < 0.001, Fig. 3). Egg masses presented to wasps alive after 24 hours only emerged in the control and Altacor treatment. Additional application rates and residues with longer drying periods (3-7 days) will be tested and analyzed in the upcoming year.

Mean % *T. japonicus* mortality (± SE) 1 hour after exposure to chemicals. Admire Pro High rate = 2.8 fl oz and Low rate = 1.2 fl oz per acre.

Mean % *T. japonicus* mortality (± SE) 24 hours after exposure to chemicals. Admire Pro High rate = 2.8 fl oz and Low rate = 1.2 fl oz per acre.
Objective 3. Develop management tools and strategies that are compatible with biological control and informed by risk from landscape factors.

Project: Attract and kill management strategy

Background: Following the identification of BMSB pheromone and pheromone synergist, we developed trap-based treatment thresholds for managing this pest in apple that reduced insecticide inputs by over 40%. We also explored the potential for attract-and-kill (AK) implementation in commercial apple orchards to effectively manage BMSB. Over two years at farms in NJ, PA, VA, WV and MD, we found that the use of attract and kill (perimeter row apple trees baited with pheromonal stimuli and treated with insecticides weekly (Fig.1)) effectively controlled BMSB compared with standard grower practices with the crop area treated with insecticide applied against BMSB reduced by up to 97% in attract and kill blocks. However, weekly insecticide treatments are difficult for growers to manage. Methods for reducing in-orchard time for growers are needed to increase the likelihood of adoption.

What was Done: The efficacy of attract-and-kill, full perimeter and threshold management of BMSB was compared with untreated control plots. Six treatments were replicated in each of three experimental apple orchards in 2015 and 2016: 1) attract-and-kill at 7-d spray intervals, 2) attract-and-kill at 14-d spray intervals, 3) perimeter at 7-d spray intervals, 4) perimeter at 14-d spray intervals, 5) treatment threshold (blocks treated with two ARM sprays when 10 adults per trap were captured cumulatively), and 6) untreated control. If any of the traps in the attract-and-kill or perimeter treated plots reached the cumulative threshold, then the entire plot was treated with two consecutive alternate row middle sprays.

To evaluate if long-lasting insecticide-treated nets (LLINs) could be substituted for insecticide sprays in attract and kill trees, Vestergaard (D-Terrence) netting was cut into 1 m square pieces and hung on perimeter trees every 50 m in three commercial apple orchards. Each tree received three squares (Fig. 2). Each net contained 1 high dose Trécé lure that was replaced at 8-wk intervals. The netting was never replaced. Nets and lures constituted the BMSB management for the plot. The standard plot at each farm was managed following the grower’s standard program. Three baited pyramid traps were placed in the interior of both plots to determine if BMSB populations had invaded the plot and further management was necessary. If a
threshold was reached, the growers were advised that intervention may be necessary. Growers were not required to spray at this time; only advised. At harvest, fruit samples were collected.

Finally, to evaluate the relative lethality of LLINs and their orientation in apple trees, four treatments were assessed in experimental apple orchards: 1) weekly bifenthrin spray (1 lb/A), 2) horizontally positioned LLINs, 3) vertically positioned LLINs, and 4) untreated control. All apple trees were baited with three high dose Trécé lures. On trees treated with netting, the lures were attached to the netting. Horizontally positioned netting was deployed in the same manner as in the commercial attract-and-kill trials reported above. The vertically positioned netting was equal in size to the horizontally positioned netting, but deployed from the bottom to the top of canopy of the apple tree. Beneath each treatment tree, a tarp was deployed covering the entire lower canopy. After 48 h and 144 h, the number of dead/moribund BMSB adults, nymphs, other stink bugs, and beneficial insects was recorded and removed from the tarp.

Results:
Significantly less BMSB injury was present in apple blocks protected by attract-and-kill at 7- and 14-day spray intervals (~6-18%), perimeter sprays at 7- and 14-day intervals (~3-12%), and treatment threshold-triggered sprays (~6-8%) compared with the untreated control (~26-33%). In general, more injury was present when spray intervals were stretched to 14d and blocks managed by a trap-based treatment threshold required less intervention (Fig 3).

In commercial orchard blocks protected by baited LLINs affixed to border row apple trees, percent fruit injury in the plot interior at harvest averaged 0.02 + 0.01 SE in compared with 0.13 + 0.02SE in grower standard plots. Baited LLINs provided equivalent protection to standard grower programs. This work will be repeated in 2018.

Finally, among vertical nets, horizontal nets, insecticide sprays and control, significantly more BMSB were recovered from trees with vertical nets or that were sprayed weekly compared with the control, with horizontal nets being intermediate (Fig. 4) indicating that a vertical orientation may be more effective at killing foraging BMSB.
Objective 3. Develop management tools and strategies that are compatible with biological control and informed by risk from landscape factors.

Project: Crop perimeter restructuring (aka border sprays) IPM

Background: This project aims to develop management tactics for BMSB that reduce insecticide inputs and may improve orchard sustainability. Since its introduction, BMSB has become a serious orchard pest that has caused growers to crop IPM friendly tactics with intense applications. This project aims to reduce insecticide inputs and improve orchard sustainability with a systems-level approach termed IPM-CPR (Crop Perimeter Restructuring). Border sprays constitute the orchard border plus the first full row, which is approximately 25% of a 5-acre block. IPM-CPR has previously shown to be successful in NJ peach orchards, and in 2016 and 2017 we expanded trials. In addition to managing the key orchard pests, we will look at the impact of IPM-CPR on beneficial insects, such as insect predators and pollinators.

What has been Done: Studies were conducted in blocks of apple and peaches with a wooded border and history of BMSB problems. 2017 was an early spring, which in some cases resulted in early harvests, allowing the crop to escape high BMSB pressure.

Apple: IPM-CPR was evaluated in apples in two NJ, 1 WV, and 1 VA farm. The aim was to compare a 5 acre CPR block to a similar sized block using standard practices. BMSB was monitored using 4 black pyramid pheromone (Trécé) traps on the border and 2 on the interior of each 5-acre block (Fig 1). For management decisions, we incorporated the trap-based threshold developed by Leskey and Short. Growers applied a single early season full block spray if trap numbers reached a cumulative threshold of 10. The threshold was reset and border sprays (border plus 1st full row) were initiated when the threshold was again reached, usually mid-July (Fig 1). Border sprays continued weekly until harvest. Inclusion of a decision-support tool for growers will permit growers to determine if populations have 'breached' the border and to rate effectiveness of the method. Stink bug injury and severity was evaluated at harvest by peeling fruit.

Peach: With 3 years of success in using IPM-CPR tactic in NJ peaches, in 2017 the concept was expanded the WV and VA using similar methods. Paired 5-acre blocks were used, one with the IPM-CPR approach and the other using grower standard practices. All fruit was harvested when one of the blocks was ripe. BMSB was monitored using Trécé dual baited black pyramid traps placed on the border, approximately 4 per 5 acre block. Each week, a 3-minuate visual assessment of selected interior trees was conducted for presence of BMSB. If 2 or more total individuals were found, a single whole-block spray was applied. Border-based insecticide applications (border plus 1st full row) began at 170 DD14, and continued weekly until harvest. Stink bug injury and severity was evaluated at harvest by peeling fruit.

After discussions with NJ growers who have experience with using IPM-CPR, we evaluated the IPM-CPR approach in larger blocks, selecting a 5, 10, and 20 acre block for IPM-CPR and comparing it to a similar 5-10 acre standard. As the size of the block increases, the
percent border decreases, further reducing the managed area. All other protocols and the number of traps remained the same.

Results: In apple, the IPM-CPR approach resulted in similar, if not reduced injury, at harvest relative to grower standard management. Averaged across all four sites, IPM-CPR stink bug injury at harvest averaged 11.02% while standard management averaged 10.88%. These results are consistent with the result from 2016 that IPM-CPR is a comparable management tactic to the grower standard and/or threshold-based management. The amount of insecticide used has not yet been calculated, but generally, the border for a 5-acre block constitutes 25% of the total block area. Apple growers will manage stink bug at frequent intervals late in the season with either full block sprays or back to back alternate row middle sprays. At one site, the grower abandoned border sprays for full block sprays to manage due to high codling moth pressure.

In peach, injury from stink bugs in VA was 2.0 ± 0.7% and 0.8 ± 0.4% for IPM-CPR and standard, respectively. In WV, stink bug injury was 0.5 ± 0.3% and 1.0 ± 0.4% for IPM-CPR and standard, respectively. The data from blocks in NJ showed similar trends. The utility of the IPM-CPR tactic appears to depend largely on the harvest timing and plot layout in peaches. For instance, the plots in WV especially had multiple varieties and ripening periods, although all fruit was harvested at the same date, which was made more difficult due to the early ripening period in 2017. We hope to improve the plot selection in the upcoming project period.

There was a significant effect of block size on stink bug injury (Fig 2). At farm 1 there was no significant difference in stink bug injury at harvest between blocks (F=1.91, P=0.13). At farm 2, the effect was significant with the standard having significantly lower injury than the IPM-CPR block at 10 acres, however 5 and 24 acres were not significant from the standard (F=2.77, P=0.045). At the last farm, there was a significant effect of treatment and size with IPM-CPR not sufficiently managing BMSB at the 20 acre size (13% injury) (F=3.95, P=0.01), whereas the standard, 5 IPM-CPR, and 10 IPM-CPR acre had 7.5, 10.8, and 5.5% injury. This suggests that depending on stink bug pressure, IPM-CPR using border sprays for stink bug management is sufficient relative to the standard.

Key impacts:
- Border sprays are a viable tactic in apples based off 2-years of data with stink bug injury at harvest similar to the grower standard.
- In peaches, the data also suggests that this is a management tactic with a maximum of 10 acres.
- We are still collecting data for the economic analysis but border-based applications manage approximately 25% of the orchard.
- The finding of the Samurai wasp, *T. japonicus*, is the first find in commercial agricultural and indicates that IPM-CPR may be a compatible tactic with biological control programs for BMSB in peach.
Objective 3. Develop management tools and strategies that are compatible with biological control and informed by risk from landscape factors.

Project: Pyrethroid-incorporated netting as a management tool

Background: Long-lasting insecticide nets, which have pyrethroids incorporated within the synthetic fibers, have been widely used for control of malaria and other insect-vectored diseases. The netting has been shown to last multiple years with only minor reductions in efficacy at killing insects. There are several commercial nets available that contain different active ingredients such as deltamethrin, alpha-cypermethrin, or permethrin, all of which have relatively low mammalian toxicity. We evaluated the effectiveness of these nets at killing stink bugs and are currently exploring potential uses of this tool in IPM strategies for BMSB.

What was done: In the lab, we demonstrated that exposure to deltamethrin-incorporated netting, D-Terrance® (Vestergaard-Frandsen) for 10 s resulted in >90% mortality of BMSB nymphs and >40% mortality of adults (Kuhar et al. 2017). Longer exposure to the net resulted in higher mortality. In another experiment, a small sheet of deltamethrin net placed inside of stink bug pyramid trap tops provided long-lasting kill of BMSB adults equal to or better than the standard dichlorvos kill strips. As a result, the deltamethrin net replaced fumigant kill strips for use in all of our BMSB sampling projects involving pyramid-type traps.

Percentage mortality of BMSB after brief exposure to D-Terrance netting in a container.

Dead stink bugs at the base of D-Terrance netting surrounding an orchard in the Hudson Valley of New York.
Current and future research: Experiments by our team in Michigan, New York, Pennsylvania, Virginia, and West Virginia are exploring the use of deltamethrin-incorporated nets coupled with high dose BMSB pheromone lures into various attract-and-kill strategies. Draping the net over shepherd’s hooks, or fencing surrounding orchards, or hanging the netting from apple trees have all resulted in significant kills of BMSB. Moreover, preliminary results suggest that these types of strategies also may reduce the numbers of BMSB infesting orchards. Research will continue in the coming years to further explore
Objective 4. Managing the economic consequences of BMSB damage

Background: During the past year two major efforts were undertaken to: 1) evaluate the cost of insecticide options for controlling BMSB for a wide range of crops and 2) development of a survey to assess the economic impact of BMSB and the potential value of biocontrols to agricultural producers.

What was done: The first effort involved updating and expanding an insecticide selection tool originally developed for assessing the cost of additional sprays to manage BMSB in Pennsylvania. The user selects an application rate (low, mid, or high based on the label rate) and inputs a pre-harvest interval (PHI) of interest. Users can either use the default insecticide prices included with the selection tool or input their own (Figure 1). Based on the user specified rate, prices, and the PHI constraint, the output for the model shows side-by-side comparisons of: 1) the least cost option, 2) the least cost option for another IRAC mode of action classification (to encourage rotation of insecticides), and 3) the least cost option with the highest efficacy (Figure 2). The model currently compares 25 insecticides for 55 crops.

The second major effort involved the development of a producer survey instrument to assess the impact of BMSB on a wide range of crops across the United States. The survey contains questions about crop damage and impact on profitability, sources of management information, management practices, and insecticide use. In particular, the survey seeks to ascertain attitudes towards biological control and potential willingness to pay (questions 18-20 in Figure 3).

Results/impact: The plan is for the BMSB insecticide selection tool to be available on the StopBMSB.org website by mid-March 2018. The producer survey has been formatted on-line and will be available for access by survey participants by the end of February 2018. Newsletter articles and links will be made available to publicize the survey through extension channels later this winter.
Figure 3. Survey questions relating to BMSB biological control and willingness to pay
Objective 5. Outreach – Deliver New Information on BMSB to Stakeholders

Inspire next generation of invasive pest Experts: The project is playing a key role in providing training and inspiration for the next generation of scientists in the area of invasive pests, insect behavior, and integrated pest management. Directly and indirectly, the project made available training opportunities for 13 MS students, 5 PhD students, and 14 Postdoctoral researchers. In addition, 57 undergraduate students were either directly supported or worked on research supported by the project.

Build upon existing BMSB outreach resources, develop and maintain a knowledge repository that captures lessons, insights and success stories over time. During the past year, project participants and collaborators have provided educational training to stakeholders across the country. This training has included presentations at scientific meetings, commodity oriented meetings, master gardeners, and a diversity of general public audience.

Number of BMSB publications and presentations during between November 2016 and December 2017.

<table>
<thead>
<tr>
<th>Publications</th>
<th>Presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research journal</td>
<td>Research Conferences</td>
</tr>
<tr>
<td>Proceedings</td>
<td>Extension Meetings</td>
</tr>
<tr>
<td>Extension</td>
<td>Workshops</td>
</tr>
<tr>
<td>Popular articles</td>
<td>104</td>
</tr>
<tr>
<td>Broadcast/Print news</td>
<td>84</td>
</tr>
<tr>
<td>State Websites</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
| StopBMSB.org website is a major avenue for delivering information to a wide array of stakeholders, including the scientific community, grower and commodity organizations, and the general public. This website is maintained by the Northeastern IPM Center (Cornell University), and was originally established during the first BMSB SCRI project. The website has been updated to reflect the new focus and personnel in the current SCRI project, as well as revision of existing information and addition of several new focus articles. To guide the future development of the website, an extension committee represented by members from each of the five regions is working with NEIPM Center personnel Chris Gonzales and Kevin Judd to identify feature article
topics and a series of Spotlight articles on project participants. The website is recognized as the “go to” site for BMSB information, and provides links to state sites and cooperating organizations. In the past year StopBMSB.org has had 86,000 unique visitors.

Expand the relevancy of BMSB outreach sources to all US Regions. There is a great diversity of needs among stakeholders based on their familiarity with the pest, the specialty crops grown, and region of the country. For instance, specialty crop producers in the mid-Atlantic region have experienced severe BMSB pest pressure since 2010, while it is still expanding into new areas in the southeast, Great Lakes, and western US. With expansion of the insect into new areas, come different climates, agroecosystems, specialty crops and communication strategies that may be unique to each region. Hence, the project promotes communication among participants at both the regional and national level to learn from previous experiences and adapt strategies to the local level. Both regional and national stakeholder meetings provide a mechanism for relevancy at both levels. Outreach activities are tailored for location audiences, yet listservs for PIs, all project participants, as well as the BMSB community at large, provide a mechanism for sharing new and relevant information with audiences at the local and national (and international) level.

Regional stakeholder advisory meeting at the Southeastern Apple Growers Meeting in Asheville, NC, in January 2017.

Washington State BMSB team conducting an outreach activity at the Saturday Farmer’s Market in Wenatchee.
PROJECT OUTPUTS

Research publications:
*Denotes publications acknowledging current SCRI project (#2016-51181-25409). Others acknowledged the previous SCRI project (#2011-51300-20097).

Proceedings/abstracts

Extension publications

Rijal, J. 2017. Update on brown marmorated stink bug (BMSB) monitoring. University of California Agriculture and Natural Resources Field Notes. pg. 4-5.

Trade journal articles

News/Broadcasts

The Beacon-News and in the Chicago Tribune. October 11, 2017. If it's autumn, it is stink bug season in Aurora. Interview with David Sharos, reporter for The Beacon-News, and Kate Thayer of The Chicago Tribune.

KDSK. March 27, 2017. KSDK staff. 10 things to know about stink bugs. St. Louis, MO.

WHCU, Cayuga Radio Group, Ithaca. October 27, 2017. Interview (by Kyle Robertson) for story on BMSB and biocontrol efforts using Samurai wasp.

WRNR Talk Radio with Rob Mario. August 1, 2017. Fall invasion of the brown marmorated stink bug.

Research Conference Presentations

Alston, DG. April 2-5, 2017. Latest in brown marmorated stink bug research in the West: symposium introduction. Annual Meeting of the Pacific Branch of the Entomological Society of America, Portland, OR.

Alston, DG. November 3 and 10, 2016. IPM for primary and secondary insect and mite pests of fruit trees. Utah Fruit School, Spanish Fork. UT.

Bergh, JC, TC Leskey, J Walgenbach, G Hamilton, M Toews, and A Acebes-Doria. December 1-2, 2016. Emergence of overwintering *Halyomorpha halys* from experimental shelters across a transect from New Jersey to Georgia. Cumberland-Shenandoah Fruit Workers Conference. Winchester, VA.

Bush, H. 2017. Examining the Success of Food-Grade Repellents on Overwintering BMSB. Brown Marmorated Stink Bug Areawide Stakeholder Meeting & IPM Working Group Meeting, November 29. Winchester, VA.

Daane, K. 2017. Small and large bug damage in nut crops. 8th Annual Advances in Pistachio Production Conference. Visalia, CA.

Fann, L, R Bessin and RT Villanueva. 2017. Predation and parasitism of sentinel egg masses of the brown marmorated stink bug in established and more recently colonized areas of Kentucky. Annual meeting of the Entomological Society of America, Denver, CO.

Leskey, TC. 2016. West Virginia University. Development of behaviorally based tools for management of the invasive brown marmorated stink bug. Morgantown, WV.

Leskey, TC. 2017. Developing border surveillance technology for the invasive brown marmorated stink bug. JCM USA and New Zealand Invasive Species Conference, Auckland, New Zealand.

Leskey, TC. 2017. Integrating biological, ecological and behavioral studies to manage the invasive brown marmorated stink bug. University of Missouri.

Marshall, AT, and EH Beers. 2017. Direct pest control through season long enclosure of apple orchards. Entomological Society of America, 5-8 November, Denver, CO.

Morrison, WR, III, and TC Leskey. 2017. Biological control of brown marmorated stink bug eggs on wild hosts over two years. 87th Annual Meeting of the Eastern Branch of the Entomological Society of America. Newport, RI.

Morrison, WR, III, and TC Leskey. 2017. Using radar to track the movement of the invasive brown marmorated stink bug on hosts augmented with varied stimuli. 87th Annual Meeting of the Eastern Branch of the Entomological Society of America. Newport, RI.

Extension presentations

Bergh, JC, N Quinn, and W Hadden. September 16-17, 2017. BMSB display. Apple Harvest Festival. Winchester, VA.

Bergh, JC. March -August 2017. Pest management update. Extension meetings for commercial tree fruit producers. Eleven meetings at various locations in VA and WV.
Bergh, JC. May 25, 2017. A smörgåsbord of arthropod pest issues. In-Depth meeting for commercial tree fruit producers. Winchester, VA.

Cooper, M. 2017. BMSB in Napa County - Quarterly Update. Winegrape Presentation. Napa County Winegrape Pest and Disease Control District.

Gut, L. January 2017. Monitoring and management of new invasive pests of apple and cherry. Wisconsin Fresh Fruit & Vegetable Conference. Waterloo, WI.

Hooks, CRR. August 10, 2017. Benefits of Marigold as a companion plant. Field crops twilight, barbeque and ice cream social tour. Upper Marlboro, MD. Note: CRRH was one of two co-organizers of this twilight tour event.

Hooks, CRR. August 17, 2017. Companion plantings for increased biocontrol. University of Maryland, AGNR, Organic vegetable field day. Upper Marlboro, MD.

Ingles, C. February 2017. EcoLandscape California Conference & Trade Show. Stockton, CA.

Leskey, TC. 2017. Pheromone-based monitoring and management tools for BMSB. Michigan State IPM Fruit School. Traverse City, MI.

Lowenstein, DM. Brown Marmorated Stink Bug Update. Oktoberpest workshop for nursery and greenhouse growers, North Willamette Research and Extension Center. 19 October. Aurora, OR.

Lowenstein, DM. 2017. Pest Management Forum (meeting with orchardists that occurs throughout the growing season to discuss pest management issues). SOREC. May 25. Central Point, OR.

Lowenstein, DM. Update on Brown Marmorated Stink Bug in the Pacific Northwest: The samurai arrives! Hermiston Farm Fair. 29 November. Hermiston, OR.

Rijal, JP. February 2017. San Joaquin Valley Ag Commissioners’ meeting. Modesto, CA.
Shield, D. 2017. BMSB - how to recognize this invasive pest. Master Gardeners Presentation: Napa, CA.

Short, BD, and TC Leskey. 2017. Updates and the future of monitoring and management of BMSB. Western MD Fruit School. Keedysville, MD.

Shrewsbury, P. May 9, 2017. Stinkers beware! Project Stink-be-Gone with Maryland's Master Gardeners. Monthly meeting of Frederick County MGs. Frederick, MD.

Spears, LR, E Brennan, and MC Holthouse. 2017. Invasive species awareness booth. Farmers’ Markets and Community Events (9 markets/events: Lehi, April 21 and 28; Logan, June 10, August 19; Ogden, June 24; Kaysville, July 6; Salt Lake City, July 8-9, and 30). UT.

Spears, LR. February 28, 2017. Updates on invasive pests in Utah. Utah Pests In-service Training. Utah State University Extension Conference. Logan, UT.

Wiman, NG. 2017. Pest management research update for hazelnuts. Wilbur Ellis Hazelnut Grower Day. 7 December. Salem, OR.

Workshops

Shrewsbury, P. 2017. Three training workshops for Project Stink-be-Gone (citizen science). One each in Montgomery, Frederick, and Anne Arundel Counties, Maryland. June 7, 14, 28, 2017, respectively.

Leveraged Funding

Alston, DG, and LR Spears. 2017-2020. Brown marmorated stink bug: new invasive pest in Utah’s fruit industry. Utah Department of Agriculture and Food USDA Specialty Crop Block Grant. $34,137 (funded, but award amount pending).

Alston, DG, and LR Spears. 2016-2018. A new invasive insect pest of specialty crops in Utah, the brown marmorated stink bug: plant host utilization in diverse urban-agricultural landscapes and promoting biological control. Utah Agricultural Experiment Station Seed Grant Program. $55,000.

Bergh, JC, and N Quinn. Development of a reliable monitoring and detection procedure for *Trissolcus japonicus*, an adventive egg parasitoid of brown marmorated stink bug. Southern SARE Graduate Student Grant Program, $14,813

Bergh, JC. Sampling for *Trissolcus japonicus*, a new Asian egg parasitoid of brown marmorated stink bug. Virginia Department of Agriculture and Consumer Services, Specialty Crop Block Grant, $37,601

Zalom, F. California Cling Peach Board (for field studies related to fruit damage on peaches) (Davis)

Hoddle, M. California Pistachio Research Board (Riverside)

Hoddle, M. Consolidated Central Valley Table Grape Pest & Disease Control District (riverside)

Kuhar, T. Contract research on the evaluation of repellents for BMSB. Bedoukian Research Inc., Danbury, CT $5,000 (VT).

Jentsch, P. and A. Agnello. Ag & Markets Apple Research and Development Program Grant funding for “Biological Control of the Brown Marmorated Stink Bug in New York State” $43,745.70 (NY)

Kuhar, TP. 2017. Contracted research on the evaluation of new insecticides on BMSB. United Phosphorous Inc. $3000

Gut, L. Michigan Apple Research Committee: - Managing invasive pests to maintain fruit quality and profitability. $22,000

Gut, L. Michigan Apple Research Committee: - Manipulating symbiotic bacteria to manage brown marmorated stink bug. $11,798

Leskey, T. Ministry of Primary Industries New Zealand. BMSB Surveillance Project: Trap Improvement and Lure Attractiveness. (PD). $180,664. (USDA)

USDA-ARS Areawide. An Areawide Biointensive Management Plan for Brown Marmorated Stink Bug (BMSB), Halyomorpha halys (Stål), to Reduce Impacts Throughout the Agro-Urban Interface. $371,278 annually for up to 5 years. (USDA)