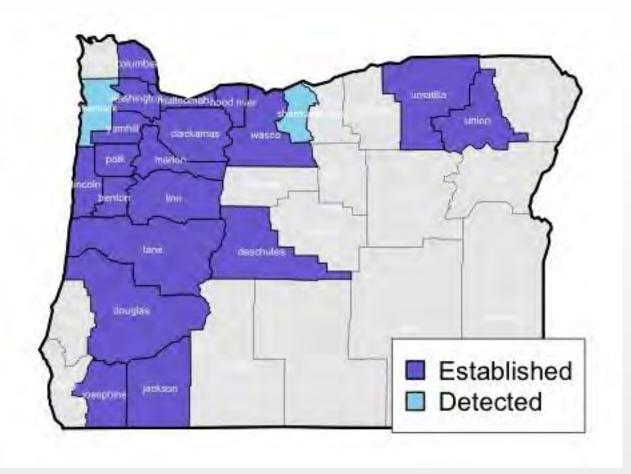


BMSB Update for the Pacific Northwest

Stakeholder Advisory Meeting BMSB-SCRI

2 November 2016 Raleigh, NC

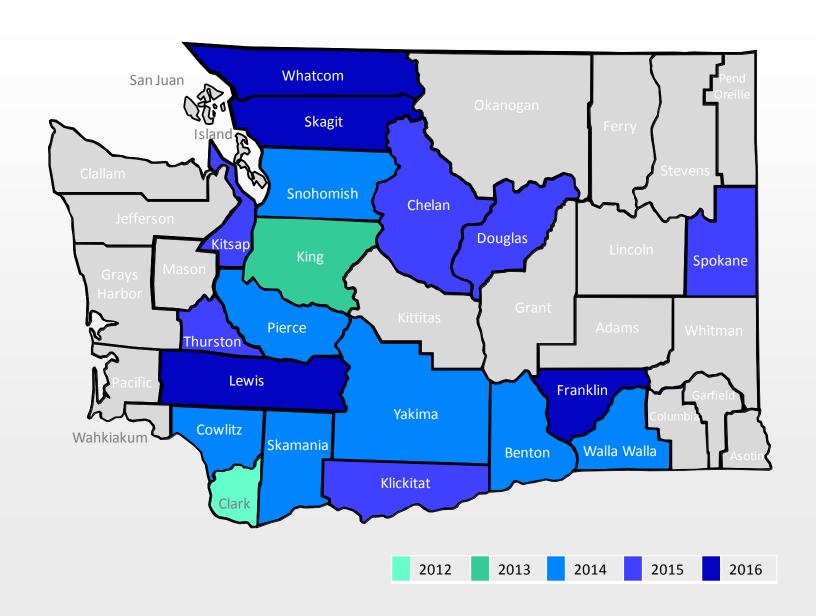
Elizabeth H. Beers
Tree Fruit Research & Extension Center
1100 N. Western Ave.
Wenatchee, Washington


Washington & Oregon co-Pis and collaborators

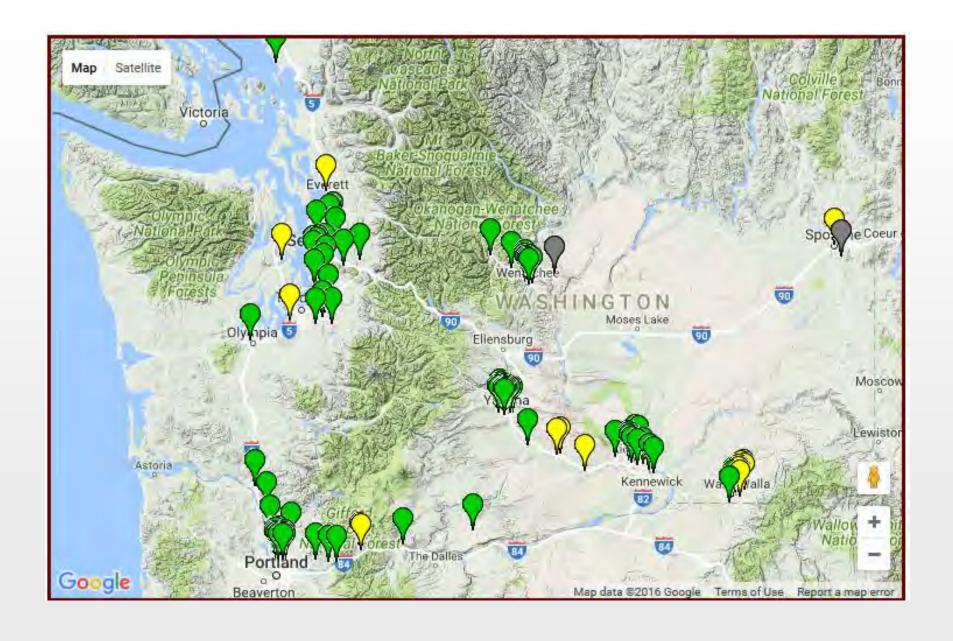
- Oregon
 - Vaughn Walton (Corvallis; berries, wine grapes)
 - Nik Wiman (North Willamette Ext. Ctr; hazelnuts)
 - Clive Kaiser (Milton Freewater; tree fruits)
 - Rick Hilton (Medford; tree fruits and wine grapes

- Washington
 - Betsy Beers (TFREC, Wenatchee; tree fruits)
 - Dave Crowder (WSU Pullman campus; landscape ecology obj. leader
 - Doug Walsh (Prosser; multiple crops, IPM & IR-4 coordinator
 - Gwen Hoheisel (Coop. extension, Prosser; wine grapes
 - Mike Bush (Coop. Ext., Yakima; master gardeners)

Invasion History of BMSB in the PNW: Oregon



First detected in Portland in 2004


Well established on western half of state (I-5 corridor)

Several counties in dry interior infested.

Washington: BMSB detected in 19 counties

Curent Distribution in the WA

Economic Damage - Current

Oregon

- Economic damage to hazelnuts in 2013 (northern Willamette Valley) estimate 2.5-5% damage
- Tree Fruits affected: apples, pears, peaches, cherries
- Studies ongoing on wine grapes, blueberry, blackberry (commercial damage?)
- Report of 50% crop loss to apples Milton-Freewater in 2015

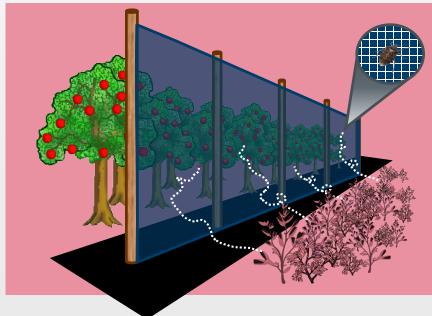
Washington

- Damage to tree fruits and vegetable crops in diversified farm in Vancouver
- Detected in wine grapes in Walla Walla
- Report of damage to pears in mid-Columbia

Crop Value at Risk (Fruits and Nuts) – PNW \$4,373,432,000

	Value of utilized production - 2015	
Crop	WA	OR
Apple	2,396,250,000	44,383,000
Apricot	9,721,000	-
Blackberry	-	38,035,000
Blueberry	146,847,000	104,307,000
Boysenberry	-	2,743,000
Sweet cherry	436,918,000	67,571,000
Tart cherry	11,000,000	531,000
Grape	419,000,000	65,000,000
Nectarine	8,840,000	-
Peach	13,644,000	-
Pear	239,750,000	153,497,000
Prune/plum	1,820,000	2,075,000
Raspberry	89,767,000	13,838,000
Strawberry	7,840,000	13,255,000
Hazelnut	-	86,800,000
Totals:	\$ 3,781,397,000	\$ 592,035,000

- 1. Winter survival and spring emergence phenology
- 2. Natural enemy surveys (since 2012)
- 3. T. japonicus range and redistribution
- 4. Enhanced pheromone trap captures with plant volatiles
- 5. Trap mechanisms
- 6. Behavior of *T. japonicus -* host chemical cues (David Lowenstein- postdoc)
- 7. Behavior of *T. japonicus -* overwintering (David Lowensteinpostdoc)
- 8. Invasion history and landscape ecology of BMSB (since 2012)
- 9. Damage phenology in pear and hazelnut (w/ Vaughn)
- 10. Treatment thresholds hazelnuts (w/ Vaughn)
- 11.Commercial pheromone trials
- 12.Temperature-dependent feeding behavior of BMSB (w/ Vaughn)
- 13. Nutritional status of BMSB (w/ Jana Lee)


- 1. Determine distribution of *Trissolcus japonicus* in Washington
- 2. Maintain a laboratory culture of *T. japonicus* in preparation for release
- Evaluate IPM-friendly management strategies for BMSB
- 4. Document the spread of BMSB within the state
- 5. Determine suitability of native shrub-steppe plants as hosts for BMSB

Obj. 3. Barrier studies

Obj. 1: BMSB Ecology in the semi-arid shrub-steppe environment

