Use of insecticide netting for IPM strategies

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Specialty Crop Research Initiative under award number 2016-51181-25409.

Research contributors

• Chris Bergh, Angel Acebes-Doria, Nicole Quinn

Peter Jentsch

Hudson-Valley Research Laboratory

• John Pote, Chris Adams, and Larry Gut

- Grzegorz (Greg) Krawczyk
- Tracy Leskey

United States Department of Agriculture Agricultural Research Service

College of Agricultural Sciences

Long-lasting insecticide nets

Product name	Product type	Status of WHO recommendation
DawaPlus 2.0	Deltamethrin coated on polyester	Interim
Duranet	Alpha-cypermethrin incorporated into polyethylene	Full
Interceptor	Alpha-cypermethrin coated on polyester	Full
LifeNet	Deltamethrin incorporated into polypropylene	Interim
MAGNet	Alpha-cypermethrin incorporated into polyethylene	Full
MiraNet	Alpha-cypermethrin incorporated into polyethylene	Interim
Olyset Net	Permethrin incorporated into polyethylene	Full
Olyset Plus	Permethrin and PBO incorporated into polyethylene	Interim
Panda Net 2.0	Deltamethrin incorporated into polyethylene	Interim
PermaNet 2.0	Deltamethrin coated on polyester	Full
PermaNet 3.0	Combination of deltamethrin coated on polyester with strengthened border (side panels), and deltamethrin and PBO incorporated into polyethylene (roof)	Interim
Royal Sentry	Alpha-cypermethrin incorporated into polyethylene	Full
SafeNet	Alpha-cypermethrin coated on polyester	Full
Yahe	Deltamethrin coated on polyester	Interim
Yorkool	Deltamethrin coated on polyester	Full

Alpha-cypermethrin incorporated netting

• Royal Sentry Mosquito Net – alpha-cypermethrin

https://buzzoff.org/product-category/mosquito-nets/ (16 x 15 x 12.5 ft) \$25

• BASF Interceptor[®] Long-Lasting Insecticidal Nets – alpha-cypermethrin

Deltamethrin-incorporated netting

- D-Terrence[®] = Zerofly[®] (mesh size = 32 holes/cm²)
 Deltamethrin 0.4% w/w incorporated Polyethylene Screen)
- low mammalian toxicity (need to wear gloves though when handling)
- Available for research through: Dr. Jan Meneley <agbio@agbio-inc.com>, AgBio, Inc., 303-469-9221; www.agbio-inc.com

Efficacy of long-lasting insecticidal nets on Anopheles mosquitoes after years of household use and washings

Tropical Medicine & International Health

<u>Volume 10, Issue 11, pages 1141-1150, 18 OCT 2005 DOI: 10.1111/j.1365-3156.2005.01501.x</u> http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3156.2005.01501.x/full#f1

Deltamethrin-Incorporated Nets as an Integrated Pest Management Tool for the Invasive *Halyomorpha halys* (Hemiptera: Pentatomidae)

Journal of Economic Entomology, 110(2), 2017, 543–545 doi: 10.1093/jee/tow321 Advance Access Publication Date: 6 March 2017 Research article

T. P. Kuhar,^{1,2} B. D. Short,³ G. Krawczyk,⁴ and T. C. Leskey³

% mortality of BMSB after brief exposure to

Can the screens replace the dichlorvos NoPest[™] kill strip in trap tops? (Leskey and Short – USDA-ARS)

Percentage (Mean ± SEM) of *H. halys* adults escaping after being placed in commercial Dead-Inn stink bug trap jars

		-			-
					2.2.2
	1		3		
			the second	1	1. 2.
1					a sea Brighter
		AND DESCRIPTION			
		1			1

Treatment	% BMSB
	escaped ¹
dichlorvos kill strip	16.7±7.8 a
lambda-cyhalothrin-dipped net	0.0±0.0 b
deltamethrin-incorporated net	0.0±0.0 b
Control	29.2±9.5 a

Accepted: 19 July 2017

Lethal and sublethal effects of long-lasting insecticide-treated nets on the invasive bug *Halyomorpha halys*

G. Sabbatini Peverieri 🗅 | F. Binazzi | L. Marianelli | P. F. Roversi

Alpha-cypermethrin BASF Interceptor nets

TABLE 1 Lethal effects of LLINs on *Halyomorpha halys* after different exposure times (Chi-squared test; **p* < .05; ***p* < .001; ****p* < .001) (pooled data)

WILEY

JOURNAL OF APPLIED ENTOMOLOGY

	% of mortality	
LLIN exposure time (min)	Treated	Control
Females		
5	40***	0
15	48***	0
30	78***	0
45	86***	2
60	92***	0
Males		
5	50***	0
15	68***	4
30	80***	6
45	94***	0
60	100***	0

Insecticide nets as row covers

D-Terrence® nets to control BMSB in Peppers

- Conducted on 3 farms
- Latin Square Design

Treatments:

- 1. Untreated control
- 2. Weekly bifenthrin spray
- 3. D-Terrence® row cover
- 4. D-Terrence[®] between staggered pepper plants (far right)

Whitethorne, VA – Dining Services Farm

Whitethorne, VA – Kentland Farm

Whitethorne, VA – Dining Services Farm Cumulative Yield

Glenvar, VA Cumulative Yield

How can we incorporate the screens into pest management?

Can pheromone-baited pyramid traps lined with treated net serve as attract-and-kill stations? – Chris Bergh study 2017

- 3 treatments:
 - Trap lined with treated net
 - Trap lined with untreated net
 - Trap with no net
- Baited with Trece Dual lure
- n = 3/site x 3 sites (2 VA, 1 WV)
- Live, moribund, and dead BMSB and non-targets in trap base and collection jar collected 2X/week
- Aug 23 Oct 5

Results not promising based on present design:

- Stronger pheromone signal?
 - Speed of intoxication?

What % of BMSB that get on the screen end up dead and counted on the catch sheet below?

- Bugs were marked with a waterbased Sharpie pen
- 4 reps (trees)
- Total # marked BMSB observed
 = 241
- % recovered on sheet = 33.6 ± 11.5%

Peter Jentsch Research

AtK traps were checked weekly and compared to Sticky Traps and Tedders Traps

Research by: John Pote, Chris Adams, and Larry Gut

× × ×

MICHIGAN STATE

Entomology

Ghost Traps Captured BMSB Consistently

Perimeter Ghost Trap Experimental Layout

Ghost Traps Failed to Prevent BMSB Infiltration

Orchards with BMSB ghost traps Pennsylvania, 2017 season

Location	Block size/	Ghost trap	Monitoring	Tarp/no
	# of G. traps	lures	lures/trap	tarp
Adams	≈ 20 ac	Trece	Trece/	Yes/no
(BH)	10 traps	3x/Gt	Trece sticky	
Adams	≈ 20 ac	Trece	Rescue/	Yes/yes
(JL)	8+4 traps	3x/Gt	Ag-Bio	
Adams	≈ 2 ac	Ag-Bio HD	Trece	Yes/no
(FR)	5 traps	5x/Gt	Ag-Bio/Trece	
Lancaster	≈ 20 ac	Ag-Bio HD	Ag-Bio/	Yes/yes
(TH)	6+6 traps	5x/Gt	Ag-Bio	
Allegheny	≈ 10 ac	Ag-Bio HD	Ag-Bio/	Yes/yes
(RS)	5+4 traps	5x/Gt	Trece	

Ghost traps placed during the week of July 20, 2017

Average SB captures in ghost traps

BMSB captures in monitoring traps JL Orchard, 2017

BMSB	Ghost traps	Control
Adults	0.58 a	2.86 b
Nymphs	0.31 a	1.28 b

Average BMSB captures per trap/week. Rescue traps baited with Ag Bio lures. Four traps per treatment

Attract-and-Kill Refinement

- Horizontal black deltamethrin-impregnated nets (D-Terrence)
- Three high dose Trece BMSB lures per tree
- Baited trees spaced every 50 m around orchard perimeter
- Compared fruit harvest injury with grower standard management plot

How can we incorporate the screens into urban control?

BMSB aggregate on tree trunks in Sept

Blacksburg, VA

Sacramento, CA

Can the treated netting help reduce the numbers of BMSB entering structures in the fall?

Total numbers of BMSB entering pyramids covered with treated vs. untreated screen (n = 7 locations)

Can panels of insecticide-treated net mitigate BMSB issues for homeowner?

- Do BMSB alight more frequently on a black panel of untreated net than on the wall within a frame? **Yes**
- Does insecticide-treated net affect the frequency of alightment? No
- Does the time spent on panels with treated vs untreated net differ? Yes, shorter on treated
- What is the mean time spent on a panel with treated net? ~4.25 min
- Do BMSB walk or fly from panels with treated or untreated net? **Most walk off**
- Is the time spent on treated net sufficient to kill adult male and female BMSB? No

Possible future directions

- Increased exposure duration
 - Larger panel(s)?
 - Folds to guide walking bugs?
 - Additional sources for exposure?
 - LED light for night attraction?
 - Likely significant non-target effects
- Do moribund bugs survive in the field?
 - Predation
 - Exposure to the elements

How long do the nets remain effective?

- In VA, the netting was used in the field for experiments and stored in an outdoor shed during the winter, then re-used again for the next 2 yrs
- Each yr, the aged screens were cut into strips and placed in Petri dishes along with BMSB adults for 24 hr
- Fresh (new) screen killed 100% of BMSB adults in 24 hr, and 3-yr old field-aged screen killed 80%

Where do we go from here?

- Further evaluate attract-and-kill strategies with the netting
- Further explore use as a barrier or crop cover
- Further explore use as a tool to reduce invasions in human dwellings

Concerns with using pyrethroid-treated netting

- How do we assess efficacy?
- Non-target effects
- Pyrethroid resistance development in BMSB

