Native natural enemies as biocontrol agents

Paula M. Shrewsbury, Rebeccah Waterworth, Alina Avanesyan, Maddie Potter, Department of Entomology, UMD; Jim Walgenbach, Emily Ogburn, Entomology and Plant Pathology, NCSU; Glynn Tillman, USDA ARS, Tifton, GA

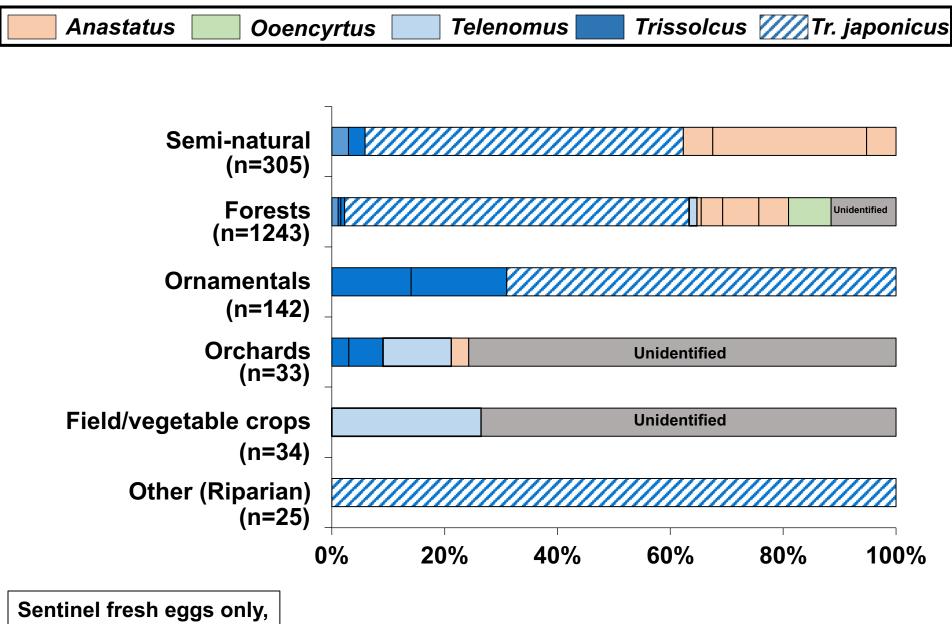
This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Specialty Crop Research Initiative under award number 2016-51181-25409.

Natural Enemies: Variation Among Regions and Habitats (identity and impact) – 2017, 2018

Region	State (years)	Collaborators		
Mid-Atlantic	Maryland (2017/18)	Paula Shrewsbury, Rebeccah Waterworth		
	Delaware (2017/18)	Kim Hoelmer, Kathy Tatman		
	Virginia (2017)	Chris Bergh, Nicole Quinn		
	Pennsylvania (2017)	Greg Krawczyk		
Southeast	Kentucky (2017/18)	Ricardo Bessin, Lauren Fann		
	North Carolina (2017/18)	Jim Walgenbach, Emily Ogburn		
Pacific NW	Oregon (2017/18)	Nik Wiman, Heather Andrews, David Lowenstein		
	Oregon (2017*/18)	Jana Lee, Hanna McIntosh, Gracie Galindo		
	Washington State (2017/18)	Betsy Beers, Joshua Milne		
West	Utah (2017/18)	Diane Alston, Cody Holthouse, Zach Schumm		
Great Lakes	Ohio (2017*/18)	Celeste Welty, Kristina Fox Vik		
	Wisconsin (2018)	Janet van Zoeren, Christelle Guedot		

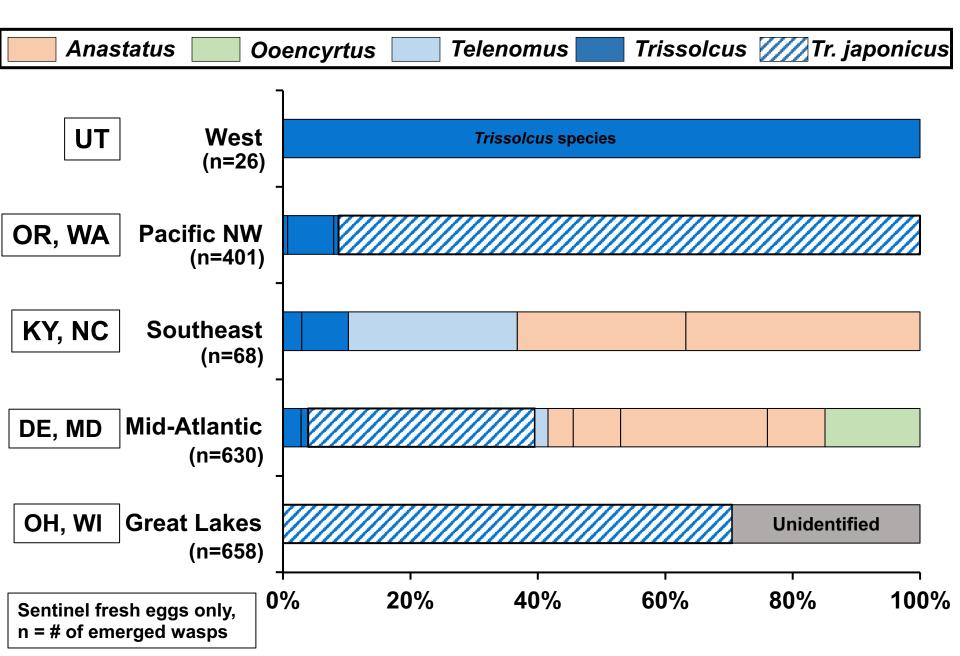
Habitat categories and types

Habitat Category:


1. Forests

Habitat Type:

- 1. Wooded edges
- 2. Orchards
- 3. Ornamentals
 - 4. Field/vegetable crops
- 5. Semi-natural
- 6. Mixed / other 6. Riparian

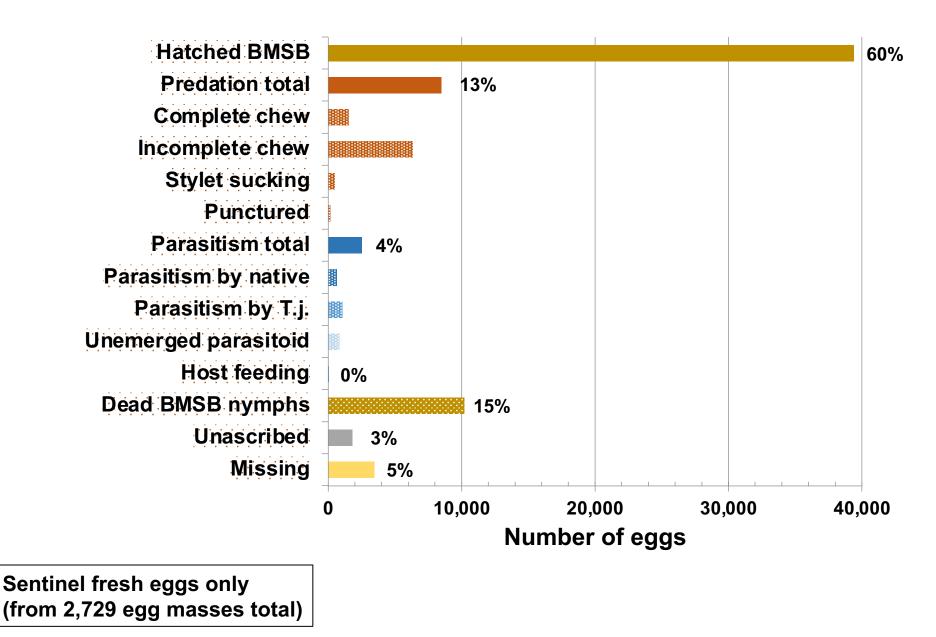

- 2. Apple, peach, pear, hazelnut
- 3. Nurseries, urban landscapes
- 4. Corn, soybean, peppers
- 5. Campuses, parks, arboretum

Percentage of parasitoid species by habitat category (2018)

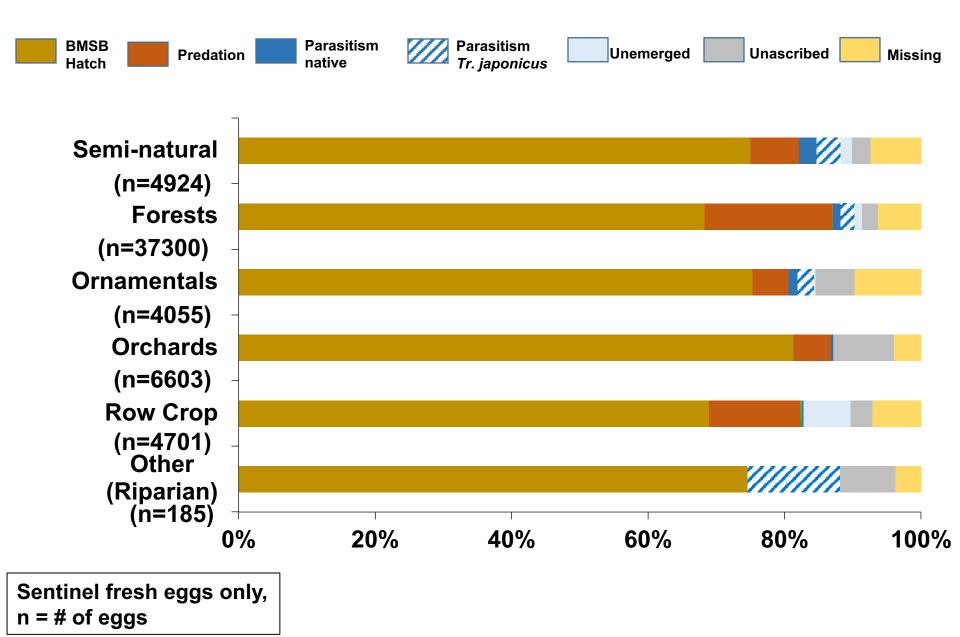
n = # of emerged wasps

Percentage of parasitoid species by region (2018)

Conclusions


Parasitoid taxa

- Habitat
 - Certain parasitoid species are more prevalent in specific habitats (2017 and 2018)
 - Anastatus and Trissolcus are arboreal
 - Anastatus in semi-natural and forests, to lesser extent orchards, ornamentals
 - *Trissolcus* in all habitats except veg / field crops
 - *Telenomus* (2017, 2018) in veg / field crop, orchards, forests
 - *Ooencyrtus* (2018) in veg / field crops, forests
 - Patterns similar in 2017 and 2018, but greater abundance of *Tr. Japonicus* in 2018
- Region


٠

- Certain parasitoid species were only found in specific regions
- Anastatus and Telenomus only found in mid-Atlantic and SE
- *Trissolcus* in all 5 regions (only native in SE, only *Tr. japonicus* in Great Lakes
- Mid-Atlantic had the greatest diversity of parasitoid species

Egg fate – pooled across region and habitat (2018)

Egg fate by habitat, pooled across regions (2018)

Conclusions

Impact by parasitoids and predators

- Overall, there was low impact of parasitoids (4%) and predators (13%)
- Habitat
 - Predation was greatest in forests (wooded areas), followed row crops
 - Parasitism was similar for semi-natural, forests, and ornamentals
 - Parasitism was lowest in row crops and orchards

Biological Control 145 (2020) 104247

Contents lists available at ScienceDirect.

Biological Control

journal homepage: www.elsevier.com/locate/ybcon

Parasitism and predation of sentinel eggs of the invasive brown marmorated stink bug, *Halyomorpha halys* (Stål) (Hemiptera: Pentatomidae), in the southeastern US

Glynn Tillman^{a,*} Michael Toews^b, Brett Blaauw^c, Ashfaq Sial^c, Ted Cottrell^d, Elijah Talamas^e, David Buntin^f, Shimat Joseph^f, Rammohan Balusu^g, Henry Fadamiro^g, Sriyanka Lahiri^h, Dilani Patel^c

* United States Department of Agriculture, Agricultural Research Service, Crop Protection & Management Research Laboratory, PO Box 748, Tifton, GA, USA

^b Department of Entomology, University of Georgia, Tifton, GA, USA

^e Department of Entomology, University of Georgia, Athens, GA, USA

^d United States Department of Agriculture, Agricultural Research Service, Southeastern Fruit & Nut Tree Research Laboratory, Byron, GA, USA

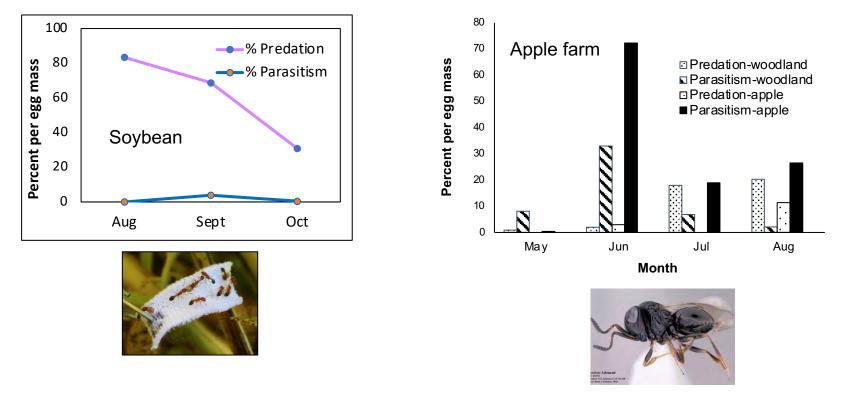
e Florida Department of Agriculture and Consumer Services, Florida State Collection of Arthropods, Gainesville, FL, USA

^f Department of Entomology, University of Georgia, Griffin, GA, USA

⁸ Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA

^b Department of Entomology and Nematology, University of Florida, Wimauma, FL, USA

Highlights: Predation and Parasitism of BMSB Eggs in Georgia and Alabama


	Frequency (%) by habitat for a species					
Parasitoid species	Woodland	Orchard	Vegetable	Row crop	Vineyard	
Anastatus reduvii	55.3	43.7		0.5	0.5	
Anastatus mirabilis	75.0	25.0				
Trissolcus brochymenae	56.2	37.5	1.6	1.6	3.1	
Trissolcus euschisti	43.3	52.2		1.5	3.0	
Trissolcus edessae	10.8	59.5		5.4	24.3	
<i>Ooencyrtus</i> sp.	25.2	35.5	33.7	5.1	1.1	
Telenomus podisi	21.8	33.3	20.3	14.5	10.1	
Trissolcus solocis	25.0	37.5		37.5		
Trissolcus basalis			86.7	13.3		
Gyron obesum		7.1	85.8	7.1		

- Ten primary parasitoid species, two new records *T. basalis* and *T. solocis*, emerged from BMSB egg masses in woodlands and crops.
- Prevalence of parasitoid species emerging from egg masses was mainly habitat specific. For example, *Anastatus* spp., *T. brochymenae*, and *T. euschisti* were the most prevalent species in woodland and orchard habitats.

Tillman et al. 2020. Biological Control. 145: 104247.

Highlights: Predation and Parasitism of BMSB Eggs in Georgia and Alabama

- Predation and parasitism rates varied by habitat and site.
- Predation, though, consistently reached very high levels in soybean and cotton.
- Highest rates of parasitism occurred in orchards, and "woody" parasitoid species parasitized BMSB sentinel egg masses in both woodland and orchard habitats. For example, peak parasitism in apple was 72.3% at a site in 2017.

Tr. euschisti Elijah Talamas

Tillman et al. 2020. Biological Control. 145: 104247.

Highlights: Predation and Parasitism of BMSB Eggs in Georgia and Alabama

- Using sentinel eggs can result in overestimating predation or underestimating parasitism
- Examine natural eggs if possible.

		Natural eg	jg masses	Sentinel e	gg masses
Year	Crop	% Predation	% Parasitism	% Predation	% Parasitism
2019	Soybean	29.8	26.7	53.6	12.3

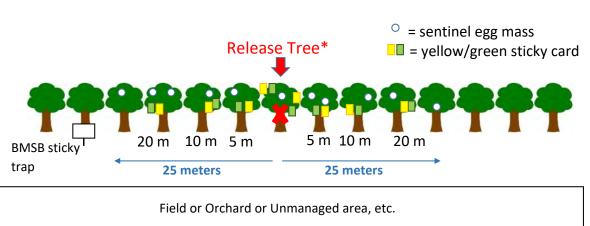
From: Tillman et al. 2020. Biological Control. 145: 104247

Parasitism of BMSB Eggs in Maryland

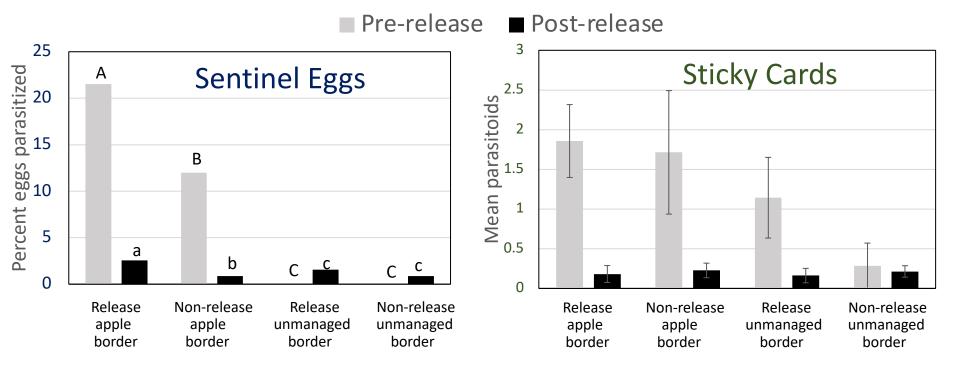
		Natural egg masses	Sentinel egg masses	
Year	Сгор	% Parasitism	% Parasitism	
2012	Ornamental trees	28.4	4.6	
2013	Ornamental trees	55.3	0.8	

From: Jones, A.L.*, D.E. Jennings**, C.R.R. Hooks, and P.M. Shrewsbury^o. 2014. Sentinel eggs underestimate rates of parasitism of the exotic brown marmorated stink bug, *Halyomorpha halys*. Biological Control, 78, 61-66. DOI: 10.1016/j.biocontrol.2014.07.011.

Anastatus reduvii Augmentative Release project


- In many field studies, most prevalent and abundant parasitoid to emerge from sentinel BMSB eggs deployed in arboreal habitats
- Objective: Examine the potential for augmentative release of Anastatus reduvii to increase parasitism rates of BMSB eggs
- North Carolina (Walgenbach and Ogburn) and Maryland (Shrewsbury and Avanesyan), will be a 2-3 year study

NC STATE UNIVERSITY


Study sites

- Two pairs of study sites in wooded borders:
 - Release sites
 - Non-release sites
- Monitor before & after release of parasitoids
 - Assess parasitoid community and activity using sentinel BMSB eggs, surveys for wild stink bug eggs, and yellow and green sticky cards

*Designated "Non-release" tree at non-release sites

NC 1st year results: all parasitoid species of BMSB

- Overall, pre-release total egg parasitism was higher than post-release. Likely due to seasonal variation in parasitoid activity.
- Significant differences among locations for both pre- and post-release

- Overall, pre-release sticky cards captured significantly more total parasitoids than post-release. Likely due to seasonal variation.
- No significant differences among locations preor post- release

*number of A. reduvii were low this first year

Goal: Elucidate measures to increase the biological control impact of native *Anastatus reduvii* on BMSB

Objectives:

- 1. Identify alternative in-season and overwintering insect egg hosts of *A. reduvii*
- 2. Identify host plants on which *A. reduvii* are most commonly associated

Alternative Hosts - Citizen Science Project

- Recruiting from 5 MD County Master Gardener groups
- Volunteers collect any and all insect eggs March 2021-August 2021
- Volunteers ship eggs to Shrewsbury lab
- ID eggs and what emerges, and host plants eggs are from

Anastatus reduvii Insect Egg Hosts

Host Common Name	Order	Family	Genus	Species	Citation(s)
Green stink bug	Hemiptera	Pentatomidae	Chinavia	hilaris	Krombein, 1979; Potter and Shrewsbury, unpubl.
Brown stink bug	Hemiptera	Pentatomidae	Euschistus	servus	Tillman and Cottrell, 2016; Potter and Shrewsbury, unpubl.
Brown marmorated stink bug	Hemiptera	Pentatomidae	Halyomorpha	halys	Herlihy, et al., 2016; Potter and Shrewsbury, unpubl.
Squash bug	Hemiptera	Coreidae	Anasa	tristis	Krombein, 1979.
Leaf-footed bug*	Hemiptera	Coreidae	Leptoglossus sp.		Mitchell and Mitchell, 1986; Potter and Shrewsbury, unpubl.
Wheel bug	Hemiptera	Reduviidae	Arilus	cristatus	Krombein, 1979; Potter and Shrewsbury, unpubl.
Shieldbacked pine seed bug	Hemiptera	Scutelleridae	Tetyra	bipunctata	Krombein, 1979.
Salt marsh moth	Lepidoptera	Erebidae	Estigmene	acrea	Krombein, 1979.
Oakworm moth	Lepidoptera	Saturniidae	Anisota sp.		Burks, 1967.
Orange-striped oakworm	Lepidoptera	Saturniidae	Anisota	senatoria	Krombein, 1979; Potter and Shrewsbury, unpubl.
Polyphemus moth	Lepidoptera	Saturniidae	Antheraea	polyphemus	Krombein, 1979; Potter and Shrewsbury, unpubl.
Carolina mantis*	Mantodea	Mantidae	Stagmomantis	carolina	Potter and Shrewsbury, unpubl.
Owlfly	Neuroptera	Ascalaphidae	Ululodes sp.		Burks, 1967.
Bush crickets / katydids	Orthoptera	Tettigoniidae	Microcentrum sp.		Krombein, 1979.

*new record of *A. reduvii* emerging from this egg host

Host Plants- Meta-analysis

- Current and previous Shrewsbury lab data, and related literature
- Summarize A. reduvii associations with different host plants
- Determine correlations with different host plants and host plant features

Anastatus reduvii Host Plants

*Shrewsbury lab preliminary data

Common Name	Genus	Species	Cultivar
Red Sunset® Maple	Acer	rubrum	'Franksred'
Legacy Sugar Maple	Acer	saccharum	'Legacy'
Tree of Heaven	Ailanthus	altissima	
Hackberry	Celtis	occidentalis	
Eastern Red Bud	Cercis	canadensis	
Tulip Poplar	Liriodendron	tulipifera	
Inkberry	Llex	glabra	
Magnolia	Magnolia sp.		
Mulberry	Morus sp.		
Kwanzan / Ornamental Cherry	Prunus	serrulate	'Kwanzan'
White Oak	Quercus	alba	
Swamp White Oak	Quercus	bicolor	
Scarlet Oak	Quercus	coccinea	
Black Locust	Robinia	pseudoacacia	
Great Wall™ Lilac	Syringa	pekinensis	'WFH2'
Beijing Gold Pekin Lilac	Syringa	pekinensis	'Zang Zhiming'
Littleleaf Linden	Tilia	cordata	
American Elm	Ulmus	americana	'Princeton'
Chinese Elm	Ulmus	parviflora	'Patriot'

Interspecific and intraspecific interactions of native *Anastatus* reduvii, an egg parasitoid of the brown marmorated stink bug (BMSB), Halyomorpha halys Stål (Hemiptera: Pentatomidae)

Main objective:

of BMSB in Asi

See presentation at To investigate the reduvii in the preanother A. reduv presence of Tris. **ESA meeting** (by Alina Avanesyan et al.; available starting March 22nd

We specifically focused on the following:

- Time spent by *A. reduvii* ON and OFF the egg mass
- ➤ Various behavior performed by A. reduvii ON and OFF the egg mass and its changes in the presence of other parasitoids
- Effect of host-feeding and probing/ovipositing, performed by A. reduvii, on the BMSB egg fate

Outlook for native natural enemies as biological control agents for BMSB

- Levels of predation and parasitism vary by habitat type
- Arboreal habitats tend to have greater rates of parasitism
- Row and vegetable crops, and wood edges tend to have greater levels of predation
- However, overall the impact of parasitoids and predators is low
- Identification and implementation of practices to increase biological control impacts are necessary
 - Augmentative releases of parasitoids
 - Habitat modifications targeting dominant natural enemy species for various habitat types (ex. incorporating plants that provide alternative hosts or resources)
 - Use of low risk pesticides

Thank You

It's time for a few polling questions