Phenology Models for BMSB

Anne L Nielsen **Rutgers University** Funding **Robert McDougall** Specialty Crop Research Initiative Shelby Fleischer Penn State **Collaborating Institutions** Shi Chen UNC Charlotte ರಶ NC STATE UNIVERSITY PennState MARYLAND GEORGIA Jim Walgenbach NC State Asheville WASHINGTON STATE UNIVERSITY Northeastern **IPM** Center Cornell University Kentucky. RUTGERS THE OHIO STATE UCDAVIS UNIVERSITY **Uvirginia**Tech Berkeley 25. UNIVERSITY MICHIGAN STATE UCRIVERSIDE OF MINNESOTA

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Specialty Crop Research Initiative under award number 2016-51181-25409.

RUTGERS

Model Phenology to Make Predictions about Populations

- *Extreme* overlap among life stages
- Traditional DD models lose accuracy for insects with overlapping life stages
- Traditional DD models don't incorporate mortality or physiological variation
- Simple to use and interface with weather-based software

Develop an Individual Based Stage-Specific Phenology Model

RUTGERS

Life Stage	Process	Stochastic	Drivers				
Adult	Overwintering survivorship	Х	Time				
	Diapause termination and	Photoperiod					
	induction						
	Preoviposition Temper						
	Fecundity (clutch size, interval,	Time					
	number)						
	Sex Ratio						
Eggs and	Survivorship	Х	Temperature and				
Nymphs			Time				
	Development Rate and	Х	Temperature and				
	Thresholds		Time				

1000 individuals, Results pooled from 100 runs per simulation

Population Dynamics in Bridgeton, NJ

Nielsen, Chen, and Fleischer Front Phys 2016; 2017

RUTGERS

Adu

Population Dynamics – Same DD

Nielsen, Chen, and Fleischer Front Phys 2016; 2017

RUTGERS

F2

Population Dynamics of Population Baiofix

Nielsen, Chen, and Fleischer Front Phys 2016; 2017

RUTG

Adult Population Size, 2005 - 2015

- Differences in stage structure between locations
- Population size differs between geographic populations
- + Suggests landscape features may play an important role as well as population haplotype

Nielsen, Chen, and Fleischer Front Phys 2016; 2017

ITGERS

Peak Population Periods in Pheromone Trap Captures and Phenology Model Simulations

State	Adults		Days between population	Nymphs		Days between population
	t	Р	peak dates (vs. phenology models)	t	Р	peak dates (vs. phenology models)
Pyramid trap						
Michigan	2.14	0.1131	16.67	4.88	0.0099	37.67
Maryland	-0.53	0.6301	7	3.02	0.0422	31
Georgia	2.46	0.072	15.67	-0.86	0.4667	20
Oregon	0.92	0.4382	12.33	4.33	0.0444	37
Clear sticky trap						
Michigan	2.14	0.1131	16.67	1.76	0.3051	31.83
Maryland	-0.09	3.9894	1.33	1.66	0.1731	14.67
Georgia	-0.93	0.4417	18	-1.01	0.3937	19.33
Oregon	-1.97	0.1638	27.67	1.89	0.1970	27

NC State: Number of Living Adults and Eggs Laid

- Empirical model based on developmental data of cohorts of bugs from winter through fall.
 - Western NC (Mills River, 2067 ft elevation)
 - Eastern NC (Goldsboro, 79 ft elevation)
- Using DD accumulations, predicts cumulative oviposition and eclosion of adults from each generation.
- Biofix Initiation of reproductive development (Nielsen et al. 2017)
 - 12.7 hr photoperiod (4 April in NC)
- Temperature thresholds (Nielsen et al. 2008)
 - 14.2 and 35.6 °C

Cumulative Oviposition and Adult Eclosion vs. Degree-Day Accumulations

Bridgeton, NJ 2012 - Adults

RUTGERS

Next Steps

- Incorporate any geographic differences in phenology
 - Overwintering survivorship
 - Critical diapause cues
- Refine impact of biotic factors
- Incorporate landscape influences
- Develop a decision aid system with BMSB model
- Increase parasitism!