Quo Vadis Japonicus? Unfortunate non-target effects of parasitoids on native stink bugs

Jim Hepler & Elizabeth Beers *WSU-TFREC 1100 N. Western Ave. Wenatchee, WA*

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Specialty Crop Research Initiative under award number 2016-51181-25409.

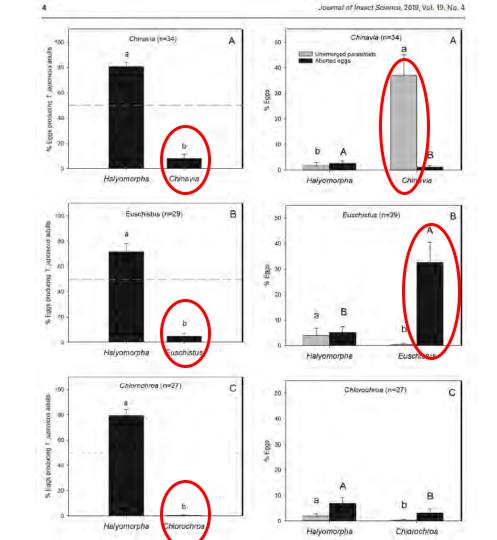
Journal of Insect Science, (2019) 19(4): 15; 1–6 doi: 10.1093/jisesa/iez074 Research

Trissolcus japonicus (Hymenoptera: Scelionidae) Causes Low Levels of Parasitism in Three North American Pentatomids Under Field Conditions

Joshua M. Milnes[®] and Elizabeth H. Beers¹

Washington State University Department of Entomology, Tree Fruit Research & Extension Center, 1100 N. Western Ave., Wenatchee, WA 98801 ¹Corresponding author, e-mail: ebeers@wsu.edu

Subject Editor: Juan Rull


Received 11 February 2019; Editorial decision 18 June 2019

Abstract

Trissolcus japonicus (Ashmead), an Asian parasitoid of *Halyomorpha halys* (Stål) (Hemiptera: Pentatomidae), was first detected in North America in 2014. Although testing in quarantine facilities as a candidate for classical biological control is ongoing, adventive populations have appeared in multiple sites in the United States, Canada, and Europe. Extensive laboratory testing of *T. japonicus* against other North American pentatomids and *H. halys* has revealed a higher rate of parasitism of *H. halys*, but not complete host specificity. However, laboratory tests are necessarily artificial, in which many host finding and acceptance cues may be circumvented. We offered sentinel egg masses of three native pentatomid (Hemiptera: Pentatomidae) pest species (*Chinavia hilaris* (Say), *Euschistus conspersus* Uhler, and *Chlorochroa ligata* (Say)) in a field paired-host assay in an area with a well-established adventive population of *T. japonicus* near Vancouver, WA. Overall, 67% of the *H. halys* egg masses were parasitized by *T. japonicus* during the 2-yr study. Despite the 'worst case' scenario for a field test (close proximity of the paired egg masses), the rate of parasitism (% eggs producing adult wasps) on all three native species was significantly less

Milnes and Beers 2019

- Reproductive effects very clear
- Non-reproductive effects less clear
- Aborted eggs ~ "black goo"

Reproductive vs Non-reproductive Effects of Parasitoids

R REVIEWS

Annual Review of Entomology Nonreproductive Effects of Insect Parasitoids on Their Hosts

Paul K. Abram,^{1,*} Jacques Brodeur,² Alberto Urbaneja,³ and Alejandro Tena³

¹Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, British Columbia V0M 1A0, Canada; email: paul.abram@canada.ca

²Department of Biological Sciences, University of Montreal, Montreal, Quebec H1X 2B2, Canada; email: jacques.brodeur@umontreal.ca

³Instituto Valenciano de Investigaciones Agrarias, 46113 Valencia, Spain; email: aurbaneja@ivia.es, atena@ivia.es "These effects are widespread and can cause greater impacts on host populations than successful parasitism or host feeding."

Molecular Approach: DNA Barcoding

Gariepy, T., T. Haye, and J. Zhang. 2014. A molecular diagnostic tool for the preliminary assessment of host–parasitoid associations in biological control programmes for a new invasive pest. Mol. Ecol. 23: 3912-3924.

Gariepy, T. D., A. Bruin, J. Konopka, C. Scott-Dupree, H. Fraser, M. C. Bon, and E. Talamas. 2019. A modified DNA barcode approach to define trophic interactions between native and exotic pentatomids and their parasitoids. Mol. Ecol. 28: 456-471.

- Unpublished CO1 barcode data
- Access to Barcode of Life
- Budget for sequencing

Received: 13 February 2018 Revised: 28 August 2018 Accepted: 7 September 2018

DOI: 10.1111/mec.14868

SPECIAL ISSUE: SPECIES INTERACTIONS, ECOLOGICAL NETWORKS AND COMMUNITY DYNAMICS

WILEY MOLECULAR ECOLOGY

A modified DNA barcode approach to define trophic interactions between native and exotic pentatomids and their parasitoids

Tara D. Gariepy¹^[5] | Allison Bruin¹ | Joanna Konopka¹ | Cynthia Scott-Dupree² | Hannah Fraser³ | Marie-Claude Bon⁴ | Elijah Talamas⁵

¹Agrituature and Agri-Foed Canada, London Research and Development Centre, London. Ontario, Canada ²School of Environmental Studies,

"School of Environmental Studies, University of Guelph, Guelph, Dintario, Cariada "Ontario Ministry of Aericulture, Food and

Rural Alfans, Guelph, Ontano, Canada 1950A-ARS European Biological Control Lab, Campus International de Ballarguet, 5t. Gely du Fesc, France

⁶Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainsville, Florida

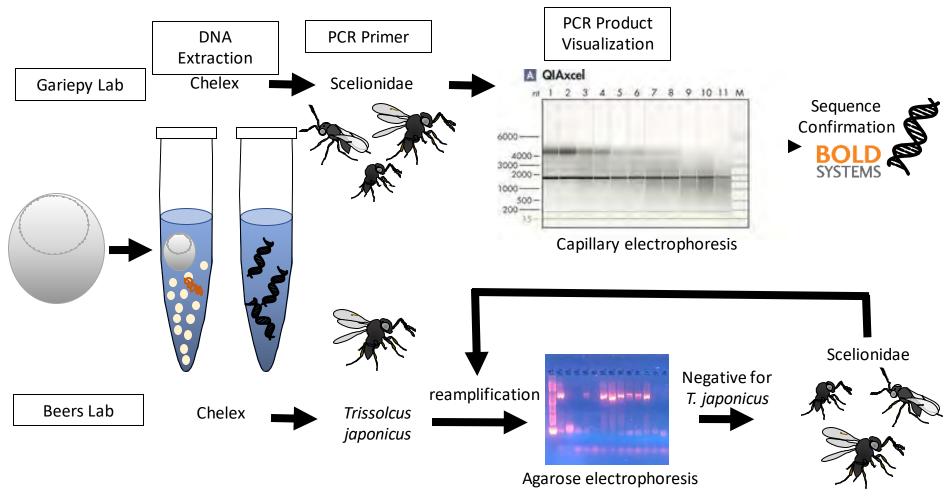
Correspondence

Tara D. Gariepy, Agriculture and Agri Food Cariada, London Research and Development Centre, London, ON, Canada. Email: tara,gariepy@canada.ca

Abstract

The establishment of invasive Halyomorpha halys (Stal) outside of its native range may impact native species assemblages, including other pentatomids and their scelionid parasitoids. This has generated interest in defining species diversity and hostparasitoid associations in this system to better understand the impact of invasive alien species on trophic interactions in invaded regions. Information on scelionidpentatomid associations in natural habitats is lacking and species-level identification of these associations can be tenuous using rearing and dissection techniques. Naturally occurring pentatomid eggs were collected in areas where *H. holys* has established in Canada and were analysed using a modified DNA barcoding approach to define species-level trophic interactions. Identification was possible for >90% of egg masses. Eleven pentatomid and five scelionid species were identified, and trophic links were established. Approximately 70% of egg masses were parasitized: parasitism and parasitoid species composition were described for each species. *Teleno*-

Is the egg half empty, or half full?


- Scelionid primer approach expensive (all samples sequenced—Gariepy method)
- Most of our parasitoids likely to be *T. japonicus*
- Needed a species-level primer (first pass), then scelionid

Primer has been tested in a time series; can detect *T. japonicus* egg in a *H. halys* egg immediately after it is laid, plus all stages right up to and after adult eclosion.

- TJ-164F: 5'-TATTGTAACTTCACATGCATTTATTATAATC-3'
- TJ-395R: 5'-AAATTCCTGCTATATGTAGGGAAAAAATA-3'
- ~200 bp amplicon

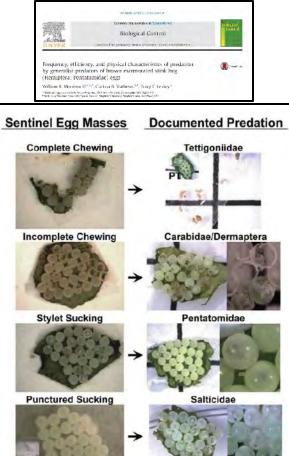
Dr. Kacie Athey

Graphic: Kacie Athey

Stink Bug Species for SEMs

- *Euschistus conspersus* •
- Podisus maculiventris
- Halyomorpha halys •

Copyright © 2015 Joseph V Higbee


Linking Egg Fate Dissections with PCR Diagnosis

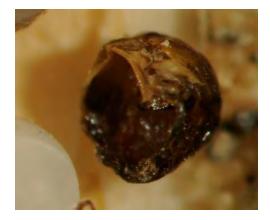
BMSB	SCRI2 - As	sessment of Stink Bu	ug Egg Natural En	emies Year: 2	018	PI: D	Dr. Beers										_	_						
Data ı	ecorder n	ame: Joshua Mines																						
Egg			Plant		Egg	N	w	Da	ite	ColFee	Intac	essme	nts (7-21	days	post	depl	loyme	nt) si	um = l	ntac	>6 wl	k Disse	ction
Mass #	Loc	Habitat	species	SB sp	Type	latitude	longitude	Out	In	#Eggs	#Eggs	Hatch	СР	ICP	SS P, I	NPHI	Par	Sunk	Jn, W	Un, D	Mis	BG	JNE pa	Nym
1	Vancouve	riparian	vine maple	Halyomorpha h	Н	45.610630	-122.602628	18-Jun-18	30-Jun-18	0	28	22	0	0	0	0 (0 0	0	5	0	1	5	0	0
2	Vancouve	riparian	vine maple	Halyomorpha h	Н	45.610630	-122.602628	18-Jun-18	30-Jun-18	0	25	13	0	0	0	0 (0 0	2	8	0	2	8	0	0
3	Vancouve	riparian	vine maple	Halyomorpha h	Н	45.610630	-122.602628	18-Jun-18	30-Jun-18	0	28	27	0	0	0	0 (0 0	0	1	0	0	0	0	1
4	Vancouve	riparian	vine maple	Halyomorpha h	Н	45.610630	-122.602628	18-Jun-18	30-Jun-18	0	28	26	0	0	0	0 (0 0	0	0	2	0	0	0	2
5	Vancouve	riparian	vine maple	Halyomorpha h	н	45.610630	-122.602628	18-Jun-18	30-Jun-18	0	28	0	0	0	0	0	25	0	0	0	3	0	0	0
6	Vancouve	riparian	vine maple	Halyomorpha h	Н	45.610630	-122.602628	18-Jun-18	30-Jun-18	0	28	25	0	0	0	0 (0 0	1	2	0	0	2	0	0
7	Vancouve	riparian	vine maple	Halyomorpha h	Н	45.610630	-122.602628	18-Jun-18	30-Jun-18	0	28	25	0	0	0	0 (0 0	0	0	2	1	0	0	2
8	Walla Wal	managed urban	crab apple	Halyomorpha h	Н	46.066280	-118.319683	20-Jun-18	24-Jun-18	0	28	21	0	4	0	0 (0 0	0	3	0	0	0	0	3
9	Walla Wal	managed urban	crab apple	Halyomorpha h	Н	46.066280	-118.319683	20-Jun-18	24-Jun-18	0	28	22	0	2	0	0 (0 (1	3	0	0	0	0	3
10	Walla Wa	managed urban	crab apple	Halvomorpha h	Н	46.066280	-118.319683	20-Jun-18	24-Jun-18	0	28	27	0	0	0	0 (0 0	0	1	0	0	1	0	0

Hatch = hatched eggs

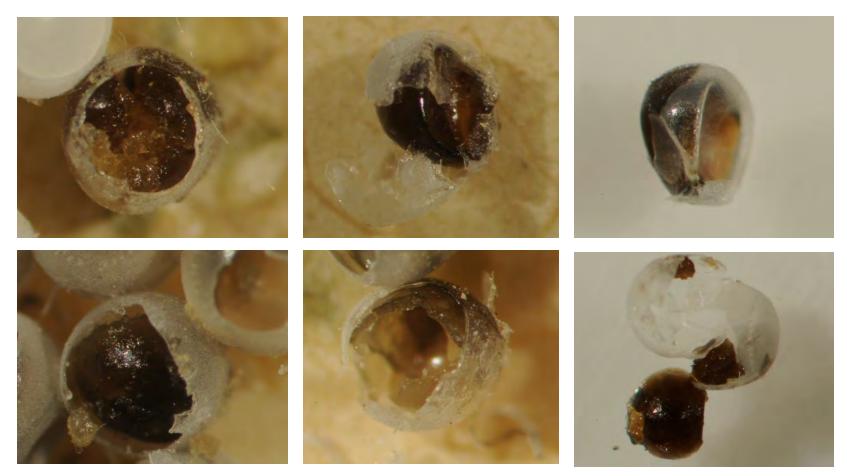
- CP = complete chew, full removal of individual eggs and accompanying substrate
- ICP = incomplete chew, remnants composed of irregular pieces of egg shell often w/ an outline of original egg mass remaining
- SS = stylet sheath present, sucking predation
- P, NP = punctured egg, no stylet sheath present (ex. spider feeding)
- **HF** = host feeding spot w/ tube from *Anastatus* females

Р	ar = em	nerge	d para	asitoid						
S	u nk = s	unke	n egg							
U	n, W =	unha	tchec	l egg, w	/hite or	light co	olor (no	thing	visible)	
U	n, D = 1	unha	tched	egg, da	ark colo	r				
N	lis = M	issing	geggs	or egg	mass (r	no visib	le evide	nce o	f	
	ch	ewin	g on a	iny egg	s or car	d (= sut	ostrate)	as in	CP or ICP)	
(5	ee Mo	rrisoi	h et al	. 2016	for desc	ription	s of egg	teedi	ing	
S١	/ndrom	es) (hyper	link to	paper)					

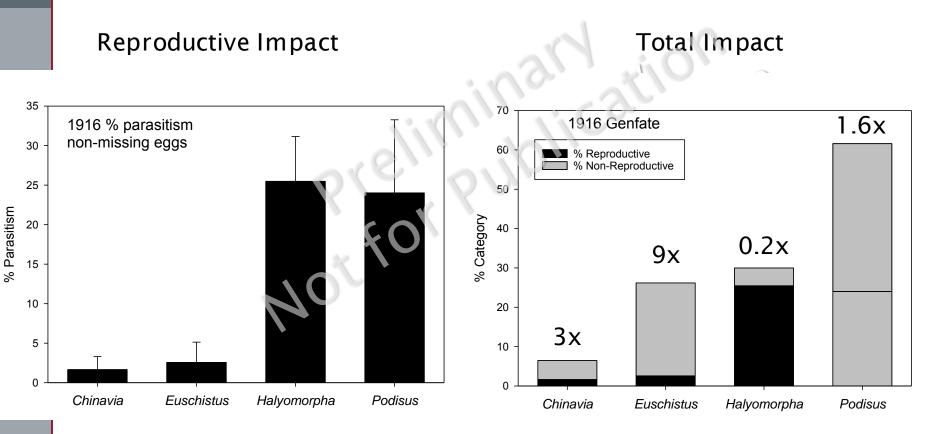
Simplified Scheme of Egg Fate Classification


А	Stink bug nymph	Hatched/Emerged
В	Emerged parasitoid	Hatched/Emerged
С	Complete Chew	Predated
D	Incomplete Chew	Predated
E	Stylet Sheath	Predated
F	Punctured, but no stylet sheath (spider)	Predated
G	Host Feeding (Anastatus)	Predated
Н	unemerged adult parasitoid	Unemerged/dissected
-	unemerged stink bug	Unemerged/dissected
J	no development, but not black	Unemerged/dissected
K	black goo	Unemerged/dissected

Egg Fate – Unemerged Stink Bugs



Egg Fate – No Development (not black)


Egg Fate – Black Goo

Eggs numbered for unambiguous ID

Reproductive vs Total Impact

Podisus? Seriously?

Modified Table 1 from **Hedstrom et al. 2017**: No-choice tests with *T. japonicus* in the quarantine lab

				Adult
		n	%	parasitoids per
Species	n masses	parasitized	parasitized	egg mass
Chinavia hilaris	21	6	28.6%	5.6
Chlorochroa ligata	25	2	8.0%	0.8
Euschistus conspersus	27	0	0.0%	0
Podisus maculiventris	23	3	13.0%	8.5
Halyomopha halys	20	20	100.0%	56.7

Thoughts and Speculations

Can we estimate non-reproductive effects from morphological characterization without the expense/trouble of PCR?

			N eggs	N eggs	PCR	% PCR
Trt	Fate	Fate Name	evaluated	PCR	positive	positive
Chinavia	I.	Unemerg SB	246	243	12	4.94
Halyomorpha	I.	Unemerg SB	88	84	6	7.14
Podisus	I.	Unemerg SB	29	28	16	57.14
Chinavia	J	Unhatch not black	21	17	6	35.29
Euschistus	J	Unhatch not black	27	27	10	37.04
Halyomorpha	J	Unhatch not black	88	85	11	12.94
Podisus	J	Unhatch not black	66	57	43	75.44
Chinavia	К	Black goo	2	2	1	50.00
Euschistus	К	Black goo	17	17	15	88.24
Halyomorpha	К	Black goo	63	59	16	27.12
Podisus	K	Black goo	22	19	10	52.63

Thoughts and Speculations

•Negative impact of *T. japonicus* highest in soybean systems where *C. hilaris* and *P. maculiventris* co-occur?

•Negative impact of *T. japonicus* less in tree crops, or where native SB oviposition period precedes peak egg abundance of BMSB?

Acknowledgements

This work was supported in part by grants from USDA-NIFA (2016-51181-25409) and the Washington Tree Fruit Research Commission (CP-16-101).

This work was supported by funding from the Washington Tree Fruit Research Commission, the Washington State Commission on Pesticide Registration, and USDA-NIFA SCRI grant award number 2016-51181-25409

This work was supported by funding from the USDA National Institute of Food and Agriculture, Hatch project 1016563.

Questions

Contact Information

Jim Hepler james.hepler@wsu.edu 951-235-3017