Pheromone-Based IPM Tactics for Managing the Brown Marmorated Stink Bug

Tracy C. Leskey

USDA-ARS Appalachian Fruit Research Station 2217 Wiltshire Road Kearneysville, WV 25430 USA <u>Tracy.leskey@usda.gov</u>

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Specialty Crop Research Initiative under award number 2016-51181-25409.

Many Mid-Atlantic **Growers Experienced** Catastrophic Damage Levels of >50% in Stone Fruit Crops in 2010

\$37 Million

In Losses For

Mid-Atlantic Apple Growers in 2010

Landscape-Level Threat To Crops

Invasive Tree-of-Heaven

Native Woody Hosts

Corn

Apple

Short -Term

- What insecticides can we use to manage BMSB?
 - What are some of the biological and behavioral characteristics that contribute to its pest status?
 - How can we monitor BMSB and make pest management decisions?
 - What other IPM tactics can we use?

Long -Term

• How can we integrate biological control?

Insecticides Used Against BMSB in Tree Fruit

Insecticide	Lethality	Residual Activity (3d)	Beneficials
Methomyl (Lannate)	HIGH	LOW - MODERATE	
Bifenthrin (Brigade)	HIGH	LOW	
Fenpropathrin (Danitol)	HIGH	LOW	
Lambda-Cyhalothrin (Warrior)	MODERATE	LOW	
Clothianidin (Belay)	MODERATE	MODERATE	
Dinotefuran (Scorpion, Venom)	HIGH	LOW	
Thiamethoxam (Actara)	MODERATE	LOW - MODERATE	

BMSB adults remain concealed from intervention for over half the

year.

BMSB is a highly dispersive pest that can move between crops and across agroecosystems.

© 201 Soogle Image © 201 Ceo

Aloock

Tox-Chase Dr mage UNDAFarm Service Agency 39'27'18.46" N 78'01'59.78 W elev. 704 ft

5729 ft Eye alt

loogle earth

Imagery Date: 6/7/2009

Two-Component BMSB Aggregation Pheromone and Synergist

Main component of BMSB aggregation pheromone (3*S*,6*S*,7*R*,10*S*)-10,11-epoxy-1-bisabolen-3-ol

Minor component of BMSB aggregation pheromone (3*R*,6*S*,7*R*,10*S*)-10,11-epoxy-1-bisabolen-3-ol

Methyl (*E,E,Z*)-2,4,6-decatrienoate (MDT) acts as a synergist for BMSB pheromone

Standard Monitoring Traps

<u>Visual Stimulus</u>

- Large black pyramid (trunkmimicking stimulus)
- Olfactory Stimulus – PHER + MDT
- <u>Capture Mechanism</u>
 - Tapered pyramid attached to inverted funnel jar with DDVP strip
- Deployment Strategy
 - Traps placed in peripheral row or border area

Traps Can Be Used as Decision Support Tools

Pheromone-Based IPM Tools

Treat entire block when threshold hit either as two ARMs sprays one week apart. Treat only baited border row trees spaced 50 m apart with an insecticide at 7-d intervals.

Treat only the perimeter of orchard at 7-d intervals.

Development of Pheromone-Based IPM Tactics How Can We Reduce Time and Labor?

Treat entire block when threshold hit either as two ARMs sprays one week apart. Treat only baited border row trees spaced 50 m apart with an insecticide at 7- or 14-d intervals.

Treat only the perimeter of orchard at 7- and 14-d intervals.

Results of IPM Tactics Comparison

Developing Thresholds For Clear Sticky Panels and Commercial Lures

Sticky Panel Threshold Results

	2017	
Treatment	No. Sprays	% Fruit Injury
1 Adult/Trap	7.00 a	2.80 a
10 Adults/Trap	2.67 b	4.50 a
20 Adults/Trap	1.17 c	3.50 a
Unsprayed Control	0.00 d	15.80 b

2047

Z018TreatmentNo.
Sprays% Fruit
Injury1 Adult/Trap5.83 a2.67 a10 Adults/Trap1.33 b7.68 b20 Adults/Trap0.67 b8.83 b

0.00 b

7.50 b

2019

Treatment	No. Sprays	% Fruit Injury
1 Adult/Trap	4.85 ab	2.67 ab
4 Adults/Trap	2.15 bc	4.33 b
4 Nymphs/Trap	0.67 c	7.76 b
Unsprayed Control	0.00 d	5.67 b
Always Sprayed	8.33 a	0.66 a

4 Adults / Trap

Unsprayed Control

- Reduced Sprays by 72% compared with Always Sprayed
- Reduced Sprays by 52% compared with 1 Adult/Trap

• Injury at 4.33%

NC State Commercial Orchard Results

Number of insecticide applications and percent BMSB damage to apples treated with insecticides based on a trap threshold (cumulative of 4 bugs/trap) versus grower standard.

		X Total	<u># Insecticide</u> Applications*		% Damage	
Orchard	Variety	capture	Thres.	Grower	Thres.	Grower
Fruitland 1	Gala	39.7	5	3	0	0
Fruitland 2	Gala	46.3	3	3	0	0
Fruitland 3	Golden	46.0	5	4	1.8	3.3
Edneyville 1	Rome	29.3	3	2	1.5	2.3
Dana 1	Rome	36.0	4	2	0	0
Mean	_	38.9	4.0	2.8	0.7	1.1

*All orchards were sprayed with Voliam Flexi at petal fall, which is not included in the total applications.

Provisional Threshold for Baited Panel Trap in Apple Orchards ~4 Adults/Trap (cumulative) Is Workable But Further Refinement Warranted

Improving Attract and Kill for BMSB

What if we could eliminate sprays for attract and kill?

Attract and Kill Trials in Commercial Orchards

Baited LLINS Outside Orchard

*decouples attractive stimuli (host plant and pheromone combined) from killing agent

Baited LLINS on Border Trees *best behaviorally

Standard Grower Program

Baited LLINS Next To Border Trees *compromise between behavior and regulatory issues

Attract and Kill Results Support Coupling Attractive Olfactory Stimuli (Host Plant and Pheromone) With Killing Agent (LLIN)

Year	2017	2018	2019*
Baited LLINS on Trees	2.0 a	4.3 a	9.2
Grower Standard	13.0 b	3.5 a	7.0
Baited LLINS Outside Orchard		12.5 b	12.7
Baited LLINS Next To Border Row Trees			6.5

*Significant at 0.0527

Next Steps

- Remain vigilant.
- Refine thresholds for apple. Try a similar approach for peach.
- Continue with LLIN-based attract and kill and verify that the "next to" approach works well.
- Integrate biological control.

Acknowledgements

Leskey and Walgenbach Labs, Cooperating Growers, and USDA NIFA SCRI # 2016-51181-25409