Photoperiod effects on diapause

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Specialty Crop Research Initiative under award number 2016-51181-25409.

Insect Diapause

- Physiological adaptation to survive changing environments
- Diapause allows synchronization of life cycles and host phenology
- Most common stimuli are photoperiod, temperature, moisture

Tauber and Tabuer (1976) ARE; Musolin (2012) Phy. Entomol

Diapause in Pentatomidae

Musolin & Numata (2003) Phys. Entomol.

- Literature from native region reports variable information on diapause cues
- When seasonality of different populations are modeled using the same developmental parameters
 - Differences in seasonality
 - Photoperiod plays a significant role in resulting population size

Nielsen et al. (2016) Front. Physiol.

Brown Marmorated Stink Bug

• When seasonality of different populations are modeled using the same developmental parameters

Nielsen et al. (2016, 2017) Front. Physiol.

Abbreviation	Location	Coordinates	Year	n	(a) (c)
NC	Asheville, NC	35.42°N 82.56°W	2013	315	
			2014	240	(19 A) C-240 000-3
NJ	Bridgeton, NJ	39.52°N 75.20°W	2012	607	A BOOM CONT
			2013	952	
			2014	190	
OR	Willamette Valley	45.23°N 122.75°W	2012	24	37
	(Aurora, OR)		2013	85	0.40 -
			2014	87	0.35 -
PAA	Allentown, PA	40.55°N 75.52°W	2006	61	
			2007	264	
			2008	552	
			2012	534	
			2013	718	0.10
PAB	Biglerville, PA	39.93°N 77.25°W	2013	544	0.05
WV	Kearneysville, WV	39.35°N 77.88°W	2012	471	1 2 3 4 5
			2013	205	Reproductive rank
			2014	62	
Total				5,911	_

Seasonality of Reproductive Development

TGERS

Female Seasonality Results

• 99.7% of females collected in overwintering habitats were reproductively immature

RUTGERS

- Reproductive state is not plastic
- Biofix estimation of 12.7h daylength as critical diapause cue

• Differences in rate of reproductive maturity between locations

Nielsen et al. Ecol & Evol (2017)

Diapause Termination Cues

- Evaluate diapause termination in laboratory studies
- Oviposition used to measure diapause termination
 - Could measure gene expression or hormone levels
- Overwintering bugs collected

TGERS

- Females held individually with 1 or 2 males at 25°C
- Daylength was varied from 12.5 16.0 h of light

State	2015	2016	2017
NC	10	20	20
WV	40	-	-
MD	30	70	-
TOTAL PAIRS/PHOTOPERIOD TRT	80	90	20

 State was not significant (AIC 926, df=779, P>0.05)

- Photoperiod was significant (P<0.001)
- Predicted probability of reproduction at 50% is 13.5h of daylenth

Days to First Egg Mass

- Time to 1st egg mass differed significantly between photoperiod treatments (*P*<0.0001, df= 3)
- Longest at 13.0 h

TGERS

• Pre-oviposition period at the critical threshold of 13.5h was longer than nondiapausing females at 25°C (13 d)

Egg Masses Produced

- Photoperiod was a significant effect (*P*<0.001, df=4)
- Lower egg production in NC population

TGERS

• Total egg production was low but within normal range

- *H. halys* responds to long-day critical diapause cues
 - 13.5 h
 - Reproduction may be lower in this population than in F1
- Matches with female seasonality data*
- Data suggests that there are population differences

- Matches with the data on overwintering emergence patterns
- Critical diapause cues can be used as biofix to begin accumulating DD

- Invasive species have demonstrated rapid evolution to critical diapause cues moving towards shorter daylengths in southern regions after range expansion
- *N. viridula* begins reproducing earlier under simulated climate change
- Data supports the idea of differences between geographically separate populations

 Photoperiod is a critical cue for diapause termination and an be used as a biofix for population models and degree-day accumulation

Urbanski et al. Am. Nat. 2012; Bradshaw & Holzapfel PNAS 2001

Thank you!

- Port of Baltimore (USA) to Auckland, NZ
- Overwintering adults in a diapause state (February)
- Simulated shipping container
 - $-10^{\circ}C \rightarrow 30^{\circ}C$
 - Raise by 2°C each day for 10 d and then hold at 30°C for 17 days

.3.2011

Pairs were then put in 16:8 at 27°C

