An Areawide **Biointensive** Management Plan for **Brown Marmorated** Stink Bug (BMSB), Halyomorpha halys (Stål), to Reduce Impacts Throughout the Agro-Urban Interface

Multi-State, Multi-Institution Effort

Areawide Objectives

- We propose to:
 - (1) implement biorational management of BMSB in key specialty and row crops;
 - (2) advance strategies for enhanced biological control of BMSB;
 - (3) assess impact of biointensive management on BMSB populations at a landscape scale;
 - (4) promote adoption and implementation of biointensive tactics for management of BMSB.
- Through these combined landscape-level approaches, suppression of BMSB populations can truly be achieved, reducing the ecological and environmental impacts of this devastating invasive species.

Areawide Management (AWM)

Wide host range Highly mobile Spread in a large area

Field-by-field management may not work

Research question/hypothesis

Does areawide management (AWM) work for BMSB? <u>Biointensive</u> AWM may reduce BMSB populations

Design of Areawide Management

Areawide Management of BMSB

Replicated AWM Research

Size of Management and Companion Sites

Distance between Management & Companion Sites

Mapping Landscape Elements

Structure/house Woodlot/windbreak Fruit trees Vegetable/field crops

Matching Landscape Elements between Two Sites

Management site

Matching Landscape Elements between Two Sites

Matching Landscape Elements between Two Sites

Management

Companion

Lawn/others

34% 37%

13%

14%

2%

Stratified Systematic Sample Layout

o trap

Management site: PA

Interface	Management	Companion
Red-Yellow	1	1
Green-Red	10	10
Green-Green	3	3
Green-Open	2	2
Blue-Green	4	4
Blue-Red	3	3
Blue-Blue	3	3
Blue-Open	1	1

Stratified Systematic Sample Layout

o trap

Companion site: PA

Interface	Management	Companion
Red-Yellow	1	1
Green-Red	10	10
Green-Green	3	3
Green-Open	2	2
Blue-Green	4	4
Blue-Red	3	3
Blue-Blue	3	3
Blue-Open	1	1

BMSB Sampling Protocol

• trap

Trapping

- 27 traps per site
- at least 50 m apart
- May to October

- 14-day interval early and weekly later in the season

Baseline Data 2017 and 2018 WV sites

WV Sites

Chi-square test for similarity of landscape element composition P > 0.05: "No statistical difference"

WV: Management Site

o trap

Structure/house Woodlot/windbreak Fruit trees Vegetable/field crops

Interface	Eliott	Sharp
Red-Yellow	1	1
Green-oepn	3	3
Yellow-open	1	1
Green-Red	8	8
Green-Green		1
Blue-Green	7	7
Blue-Red	3	3
Blue-Blue	4	3
Total	27	27

WV: Companion Site

Companion

o trap

Structure/house Woodlot/windbreak Fruit trees Vegetable/field crops

Interface	Elliott	Sharp
Red-Yellow	1	1
Green-oepn	3	3
Yellow-open	1	1
Green-Red	8	8
Green-Green		1
Blue-Green	7	7
Blue-Red	3	3
Blue-Blue	4	3
Total	27	27

P = 0.471

P > 0.05 for all pairwise comparisons between management and companion sites

Spatial Analysis

SADIE: <u>Spatial Analysis by Distance IndicEs</u> (Perry et al. 1995) Measuring and mapping spatial clusters in count data.

Two forms of spatial cluster

Patch: a region of relatively large counts close to one another Gap: a region of relatively small counts close to one another

Companion

Patch / Hotspot Gap / Cold spot

Structure/house Woodlot/windbreak Fruit trees Vegetable/field crops

Structure/house

Woodlot/windbreak

Fruit trees

Vegetable/field crops

Next Steps

Continue monitoring at 4 Areawide and Companion sites.

Begin to implement biointensive management tactics at Areawide site. Examples include:

- a. Releases of *Trissolcus japonicus*.
- b. Threshold-based monitoring.
- c. Attract and kill.
- d. Border sprays.

Measure changes in BMSB and natural enemy relative densities and/or presence over time and grower willingness to adopt and/or support biointensive management tactics.

Areawide Outcomes

