Objective 1: Landscape Ecology BMSB SAP meeting 2019

Dave W. Crowder & Javier G. Illan

Questions/Main aims

Can we effectively predict the risk of invasion and population dynamics of BMSB using ecological modelling?

What are the most important environmental factors driving BMSB expansion and population dynamics?

Questions/Main aims

Can we effectively predict the risk of invasion and population dynamics of BMSB using ecological modelling?

What are the most important environmental factors driving BMSB expansion and population dynamics?

 Our nation-wide BMSB monitoring scheme represent a very rare and ideal dataset to tackle these questions

• Novel study: SDMs are rarely applied to nonnatural systems or agricultural insect pests

Monitoring Results

	2017	2018*
States	15	15
Research groups	26	26
Sampling sites	276	223
BMSB individuals trapped	24476	14605
BMSB/trap by region (#sites):		
MidWest	25.6 (37)	28.4 (62)
NorthEast	56.5 ** (29)	30.3 (30)
SouthEast	60.9 (65)	71.6 (42)
West	10.2 (145)	16.4 ** (89)
Utah	3.7 (54)	2.7 (58)
West (without UT)	14.0 (91)	17.2 (31)
Mean tp (ºC)	11.57 (5.07 - 18.26)	(under development)
Minimum tp (ºC)	5.26 (-2.88 – 12.03)	
Maximum tp (ºC)	17.87 (12.79 – 24.48)	
Precipitation (mm)	705.50 (190.67 – 1841.45)	
Elevational range (m)	541.63 (3-1845)	
Land-use (within 5K buffer)	15 land-use classes (+82 crop types)	

* Note: Waiting for three states

** Statistically significant

Modeling approach:

- Invasion Risk (occurrence models): MAXENT
- Population Dynamics (abundance models): Boosted regression trees implemented in "gbm" R package.

Predictors

a) Climatic (PRISM)

- Maximum temp summer
- Minimum temp winter
- Precipitation
- Vapor pressure deficit
- Photoperiod

Predictors

b) Landscape

- Cropscape (land-cover)
- Distance to water
- Distance to urban areas
- DEM (Elevation)

BMSB risk of invasion (Landscape) 2017/2018 in the PNW

BMSB risk of invasion (Climate) 2017/2018 in the PNW

Further research...

NDVI

LIDAR

Heterospecifis / conspecifics Facilitation vs competition