

IPM-CPR in Apples and Peaches

C. Akotsen-Mensah, B. Short, C. Bergh, T. C. Leskey, D. Polk, A. Rucker and A. L. Nielsen

Overall Goal of IPM-CPR

Build a **new IPM system** based on **behavioral ecology** that includes BMSB and is able to **sustain perturbations** to the system

Previous work in peach

IPM-CPR provided BMSB and OFM control at levels equal to grower standards in Jerseyqueen and PF-24

- Potentially better along crop perimeter where insecticide is applied weekly

Blaauw et al., (2014) in 5 acre peach block

Rutgers

Specific objectives

- Determine effectiveness of IPM-CPR (border spray) as systems level management tactic in apples (2016 and 2017)
 - Blaauw et al., (2014) in peach
- Determine the maximum block size at which the IPM-CPR can work effectively in peach (2017)
 - Based on work by Blaauw et al., (2014)

Questions

Can IPM-CPR work in apples as it did in peaches?

What spatial scale does IPM-CPR works?

Increasing the size will shrink the size of the border relative to the block size

Layout of Blocks

Visual sampling

Border spray blocks:

- Mating disruption for internal worms (OFM)
- Herbicide Stinger applied to row middles to remove flowering weeds
- BMSB management with border sprays

Grower standard:

- All other pests managed using standard practices
- BMSB managed using full block/ Complete sprays

Injury/Damage assessment apple and peach

Destructive sampling for injury assessment for both apple and peach

➤At harvest collect 25 fruit per sampling tree (2tree sample = 50 fruit)

➤Fruit were peeled to assess internal damage:

- •Stink bugs (all species)
- •CM/OFM (data not presented)
- •Plum curculio (PC) (data not presented)

Apple

Layout of Apple Blocks

Pesticide application

Border spray blocks:

- Mating disruption for internal worms (CM & OFM)
- Herbicide Stinger applied to row middles to remove flowering weeds
- BMSB managed with border sprays + 1st full row triggered at two different times

Grower standard:

- All other pests managed using standard practices
- BMSB managed using full block/ Complete sprays or ARM
 - Triggered by trap-based threshold for BMSB

Decision to spray in apple

- A trap-based threshold was used to trigger a complete or ARM sprays early on in apples
- Then when those zeroed out we reset the threshold which would start border applications late in the season
- This allowed protection of the fruit early in the season and then a break when BMSB is foraging elsewhere before initiating the border applications

RUTGERS

Weekly trap captures of all SBs

2016

TGERS Weekly trap captures of all SBs in VA

2017

Seasonal total of all stink bugs

RUTGERS

Stink bug injury at harvest

Apple 2016

TGERS

Apple 2017

RUTGERS

Injury Assessment at Harvest at Orchard Section-NJ

Apple 2016

Peach

Layout of Peach Blocks

Visual sampling

Border spray blocks:

- Mating disruption for internal worms (OFM)
- Herbicide Stinger applied to row middles to remove flowering weeds
- BMSB managed with border sprays + 1st full row

Grower standard:

- All other pests managed using standard practices
- BMSB managed using full block/ Complete sprays
 - Triggered by 2 insects of any life stage per visual observation for BMSB

Decision to spray in peach

Weekly border insecticide applications beginning late-May (170 DD₅₇)

Visual samples are used to determine if sprays were needed on the interior of blocks

RUTGERS Seasonal total of stink bugs (ALL)

Peach 2017

Injury at harvest

Peach 2017

RUTGERS Peach Injury at harvest

RUTGERS

Correlation between total SB and Injury per block in peach

Other Benefits

Species	Apple		Peach	
	IPM-CPR	Standard	IPM-CPR	Standard
Codling moth/OFM	Low to medium infestation (NJ)	Low to medium infestation (NJ)	Low	Low
Plum curculio	Low	Low	Low	Low
Tarnished plant bugs	Low	Low	Low	Low
San Jose Scale	Very low	Very low	Very low	Very low

Summary and Take Home Message

- IPM-CPR was similar to grower's standard in terms of injury by BMSB
 - > Apple results are similar to peaches
 - STILL analyzing insecticide data but border are ~25% of the total area for a 5 acre block
- There was damage at both the edge and interior
 - Damage at the edge was in most cases greater than the interior

RUTGERS

Summary and Take Home Message

Results suggest IPM-CPR works and can be adopted to manage BMSB

Caveat:

- Size for border spray to hold up may be ~10 acres.
- Landscape factors are important
- Single variety vs. multiple varieties in commercial orchards

Cost analysis is being conducted

Good News?

First record of T.j in commercial peach orchards

These were found border spray plots

➤As early as June

IPM-CPR (Border spray) is compatible with biological control

Acknowledgments

- All cooperative growers who provided resources for the work
- > Technical support from Dr. Nielsen's lab members
- Staff of RAREC
- ➢ Funders: USDA-CPPM and SCRI

Thank You

Questions