Assessing the presence and distribution of Trissolcus japonicus using yellow sticky traps

N.F. Quinn ${ }^{1}$,T.C. Leskey ${ }^{2}$, J.C. Bergh ${ }^{1}$

${ }^{1}$ Virginia Tech AHSAREC, Winchester, VA ${ }^{2}$ USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV

Status of BMSB Biocontrol

- Native biocontrol inadequate (Abram etal. 2017)
- In Asia, Trissolcus japonicus Ashmead (Hymenoptera: Scelionidae) effectively regulates BMSB population
- up to 80% parasitization rates have been reported (Yang et al. 2009)
- Adventive US population of T. japonicus detected in Maryland in 2014 (Talamas et al. 2015)
- Detected in Winchester, VA 2015-2017
- Many other locations in the Mid-Atlantic, west coast (NY, PA, NJ, DE, WV, WA, OR)

Monitoring BMSB and its Natural Enemies

- Most BMSB trapping to date via ground-deployed traps
- Most sampling for BMSB parasitoids via sentinel eggs or wild egg mass collection
- Anecdotal and experimental observations suggest greater number of BMSB and injury at the tops of trees (Short, pers. comm, Joseph et al. 2014)
- Need to understand the distribution of BMSB natural enemies (especially T. japonicus) in host trees and monitor the spread of T. japonicus

Where is T. japonicus?

- Distribution and ecology of adventive U.S. population is unknown
- Where are BMSB life stages in host tree canopies?
- Where does Tj forage for BMSB eggs?
- Within hosts
- Among hosts
- Spatial scales
- Where is $T j$ in VA and beyond?
- Need to sample a variety of host trees and regions

Canopy Trapping for BMSB

- Female ToH located at woods edge next to apple orchards ($\mathrm{n}=5$)
- Same trees used in 2016 and 2017
- In each tree, a trap was deployed in the upper, middle, and lower canopy
- Low dose pheromone lures and kill strips were changed every two weeks
- Deployed on a "pulley system"
- Number of BMSB per trap counted weekly midApril to mid-October

BMSB Captures in Female Tree of Heaven: 2016

- Data were log transformed
- GLMMs: trap height blocked by tree and date
- Tukey-Kramer adjusted Is means

BMSB Captures in Female Tree of Heaven: 2017

- Data were log transformed
- GLMMs: trap height blocked by tree and date
- Tukey-Kramer adjusted Is means

Destructive Sampling for BMSB Egg Masses

- 20 female ToH adjacent to peach or apple orchards
- Trees were similar in branch architecture
- Sampling occurred in late June ($n=5$) and early August ($n=5$) each year
- Trees felled, height of each branch measured
- BMSB egg masses collected from foliage
- Eggs were maintained at $25^{\circ} \mathrm{C}$
- Parasitoid ID confirmed by E. Talamas

Destructive Sampling BMSB Egg Mass Locations (2016 \& 2017)

Canopy Location	Total \# egg masses	\# Egg masses yielding T. japonicus	\# Egg masses yielding other parasitoids	\# Egg masses previously parasitized
Upper	13	3	0	0
Middle	28	7	3	3
Lower	10	0	0	1

Numerically, but not significantly, greater levels of parasitism at mid-canopy (Fisher's exact test, $d f=6 ; p=0.27$)

Sentinel Egg Deployment

- Egg cards deployed on foliage from cut ToH branches on pulley transects
- Retrieved after 72 hours
- Data collected:
- Number of damaged and undamaged eggs remaining
- Type of predation (Morrison et al. 2016)
- Number of adult parasitoids that emerged
- Parasitoid ID confirmed by E. Talamas

Parasitized egg masses recovered from sentinel egg canopy transects

2016:

- 135 egg masses deployed
- $4.4 \%(n=6)$ of egg masses parasitized
- $2.2 \%(n=3)$ of egg masses parasitized by T. japonicus (mid and upper canopy)

2017:

- 105 egg masses deployed
- $2.86 \%(n=3)$ of egg masses parasitized
- $0.95 \%(n=1)$ of egg masses parasitized by T. japonicus (upper-canopy)

Can we use sticky traps to monitor Tj?: 2016 preliminary study

- Replaced sentinel egg sampling at end of season (same trees, heights, pulley system)
- Half of a one-sided, yellow Alpha Scents sticky trap (23x14cm)
- Deployed for three, 1-week intervals Aug 12 - Sept 9
- Parasitoid specimens identified by E. Talamas
- Three specimens captured
- 1 upper-canopy, 2 mid-canopy (same trap)
- Study expanded in 2017

Sticky traps vs. sentinels deployed in tree transects in 2017

- No significant difference between sampling methods
Continuity adjusted $\chi^{2}(1, n=255)=0.263, p=0.61$
- No significant effect of height on number of detections
$\chi^{2}(2, n=255)=1.63, p=0.44$

Mid-canopy sticky traps

1. Assembly:

Sticky traps attached to 4.8 m poles

2. Deployment: At mid-canopy for 7 days

Preliminary sticky traps (2017)

- 30 mid-canopy sticky traps deployed total (10 per week for 3 weeks)
- 2/30 traps captured T. japonicus
- 12 individuals captured total

Paired host plant comparisons using sticky traps

- Sticky traps deployed at mid-canopy in the following pairs:
- Black walnut : Female tree of heaven ($\mathrm{n}=5$ pairs)
- Black locust : Female tree of heaven ($n=5$)
- Hackberry : Female tree of heaven ($\mathrm{n}=5$)
- Trees within the same pair were no closer than 10m and no father than 25 m apart
- 5 weeks of sampling (-) for 7 days at a time

Host plant comparisons using sticky traps

- No Tj detected on sticky traps deployed

Host tree pair

Mapping Tj's distribution in VA

- Selected 5 sites in nearby counties in 2017
- Deployed 3 mid-canopy yellow sticky traps per site in female ToH
- Three, 7-d intervals, Aug 23 - Sep 8
- $\mathrm{n}=54$ traps

Tj not detected outside of Frederick County in 2015-2017

Summary

- BMSB life stages are collected in greater numbers from the upper and middle of tree canopies than in the lower portion
- Tj is present in Frederick Co., Virginia and detected once again in 2017
- Yellow sticky traps are an effective monitoring tool
- Monitoring may be optimized by deploying detection tools in the mid-canopy of trees

Future directions

- What is the distribution of T. japonicus in VA?
- Continue deploying sticky traps farther afield

- Do Tj prefer to forage on some host plants compared with others?
- Lab and semi-field assays
- Host plant effects on \% parasitism and attack rates
- Response of Tj to host plant volatiles
- Mark-release-recapture
- Where does Tj prefer to overwinter?

Acknowledgements

- Funding:
- Virginia Department of Agriculture and Consumer Services Specialty Crop Block Grant \#301-17-036
- USDA-ARS Agreement 58-8080-6-017
- USDA-NIFA SCRI 2016-51181-25409
- Advisory Committee: Chris Bergh, Tracy Leskey, Tom Kuhar, Jim Walgenbach, Tim Kring
- Thanks to:
- Elijah Talamas for parasitoid ID assistance
- Alson H. Smith Jr. AREC staff
- Angel Acebes-Doria and Whitney Hadden
- Undergraduate support (Emily Craig, Tyler Garrett, Andrea Hagen, Gianna Kerestesy, Abby Wilson, Nicole Whalley)

