Surveying for Indigenous and Exotic Natural Enemies of BMSB in Diverse Habitats in Maryland

Rebeccah A. Waterworth and Paula M. Shrewsbury

Department of Entomology, University of Maryland

Nov. 29, 2017

BMSB Areawide Stakeholder Meeting

Biological Control of BMSB

- No need for an overview of BMSB as a pest
- Sustainable pest management is needed: biological control
- Understand biocontrol better:
 - Who are the players?
 - Where are they in diverse landscapes?
 - Where are they in a geographical region?

Goal: Enhance the success of natural enemies as much as possible.

Who are the "players?"

Natural enemies: Parasitoids

Known native species vs

Anastatus reduvii Trissolcus spp. M. Buffington Ooencyrtus spp. From BMSB 4th Working Group June 2015 **Exotic species**

Trissolcus japonicus

Other species?

Where are the natural enemies?

Within diverse landscapes:

- Better design
- Conserve specific habitat features

Where are the natural enemies? 2016 FIELD SURVEY (EAST)

ancactor

T. japonicus now in: MD, D.C., VA, WV, DE (east coast) & OR, WA (west coast) 2016 Recoveries were all from BMSB (sentinel & wild)

Big Picture vs Reality

Project Stink-be-Gone

- Citizen science based project with Maryland's Master Gardeners
- Project development
 - Recruitment
 - Training
 - Participant interactions and engagement
 - Logistics
 - Assessing samples

Recruitment

- Selected 3 counties in Maryland with large and active Master Gardener groups
- Attended monthly meetings
 - 10 min presentation

Training

- 1. Trained 44 people!
- 2. Overview of
 - stink bug biology
 - biological control
 - host plant lists
- 2. Hands-on ID of stink bug adults and egg masses
- 3. 20 minute searching activity outside
- 4. Sample preparation, data collection, and pack and ship the cooler
- 5. Pre-quiz and post-quiz
- 6. Training survey

6:40 PM

LABEL

7 58% ĊD.

1 mir

DOWNLOAD

Participant Interactions

- Website
- Emails
- Responding to queries on datasheets or notes sent with samples

Logistics

- Participants searched and collected ≥ 6 hours during two periods (6 weeks) of summer 2017
- Sent samples immediately to UMD via FedEx
- Returned coolers within the day
 - Petri dishes
 - Datasheets
 - New shipping label

Assessing Samples

- Each sample assigned an ID # – into a growth chamber for parasitoid emergence
- Data collection ongoing
- For each stink bug egg mass:
 - ID bug genus
 - Quantify eaten or parasitized eggs
 - ID parasitoids to spp
 - Dissect eggs to determine fate
- Summarize host plant, habitat, and locality data

Results: Training

Measure the impact of training in the change in knowledge of participants

Results: Locations of stink bugs

Shrewsbury Lab

Master Gardener sending 1 stink bug egg mass (minimum)

Results: Samples

- 301 stink bug egg masses
 - BMSB (9.3%)
 - Harlequin (46.2%)
 - Euschistus sp.
 - Green
 - Podisus sp.
 - A couple of other spp (TBD)
- 16 other bug egg masses
- 41 moth egg masses
- 25 other "things"

Results: BMSB hosts

Trees/shrubs	Perennials	Annual Flowering Plants	Annual, Vegetables	Vines, Various
Cercis (7)	Red raspberry (3)	Cleome (4)	Tomato (1)	Vitis riparia (1)
Acer (4)	Wine raspberry (1)	Lantana (1)		Virginia creeper (1)
Magnolia (1)				
<i>Tilia</i> (1)				
Paulownia (1)				
Callery pear (1)				
Cornus racemosa (1)				

Results: BMSB hosts

Trees/shrubs	Perennials	Annual Flowering Plants	Annual, Vegetables	Vines, Various
Cercis (7)	Red raspberry (3)	Cleome (4)	Tomato (1)	Vitis riparia (1)
Acer (4)	Wine raspberry (1)	Lantana (1)		Virginia creeper (1)
Magnolia (1)				
<i>Tilia</i> (1)	4 4	AND AND A	and la	
Paulownia (1)				
Callery pear (1)				
Cornus racemosa (1)	www.g	ardenia.net	ww	w.Wikipedia.org

Results: Biological Control

Predation: 5% of all stink bug egg masses with at least one egg eaten

Parasitism: 34% of all stink bug egg masses (102/301)

Results: Biological Control

Results and Discussion

- Training was effective:
 - Increased knowledge about stink bugs
 - ~79% of samples were stink bug egg masses
- Collectively, citizen scientists searched a larger area
- Two new plant hosts of BMSB
- Signs of biological control
 - ~40% of stink bug egg masses
- New locality for *T. japonicus*

Future Work and Directions

- Identify:
 - Egg masses to bug genus
 - Parasitoids to species
- Determine egg fate
 - Egg dissections
- Summarize habitat data
 - Where were stink bugs?
 - Where were they not?
 - In specific habitats, what were the natural enemies?
- IRB-approved survey to evaluate entire program
- 2018 work: Recruit master gardeners farther west in Maryland (higher BMSB pressure)

Acknowledgements

Funding:

- USDA-ARS Areawide Grant # 8080-21000-024
- USDA-NIFA SCRI 2016-51181-25409
- Members of the Shrewsbury lab, especially Nancy Harding

UMD office staff: Josh Kiner and Kiley Gilbert

Master Gardener County Coordinators:

- Steve Dubik
- Michael Ensor
- Susan Trice

Don Weber and Megan Herlihy, USDA ARS IIBBL:

- Stink bug adults and egg masses
- Plant ID

Elijah Talamas, Florida Department of Ag and Consumer Services

Rock Hill Orchard

Ruppert Nursery

Larriland Farm